Compare commits

...

10 commits

20 changed files with 385 additions and 183 deletions

View file

@ -37,6 +37,7 @@ steps:
- dist/ - dist/
- nginx.conf - nginx.conf
- version.txt - version.txt
deploy: deploy:
image: appleboy/drone-ssh image: appleboy/drone-ssh
settings: settings:
@ -78,22 +79,18 @@ steps:
from_secret: ssh_key from_secret: ssh_key
port: 2332 port: 2332
script: script:
- cd /home/mnisyif/docker-containers/mnisyif/frontend - echo "Verifying deployment..."
- VERSION=$(cat version.txt) # Verify the container is running
- echo "Confirming deployment for version: $VERSION" - docker ps | grep frontend || { echo "Container failed to start"; exit 1; }
- docker ps -a # Display container logs
- if ! docker ps | grep -q frontend-$VERSION; then - docker logs frontend
echo "Container failed to start"; # Test Nginx configuration
docker logs frontend-$VERSION; - docker exec frontend nginx -t
exit 1; # Check Nginx process
fi - docker exec frontend ps aux | grep nginx
- echo "Container is running, checking Nginx configuration..." # Check contents of /usr/share/nginx/html in the container
- docker exec frontend-$VERSION nginx -t || { echo "Nginx configuration test failed"; exit 1; } - docker exec frontend ls -la /usr/share/nginx/html
- echo "Listing contents of /usr/share/nginx/html" # Perform a simple HTTP request to check if the server is responding
- docker exec frontend-$VERSION ls -la /usr/share/nginx/html
- echo "Listing contents of /usr/share/nginx/html/resumes"
- docker exec frontend-$VERSION ls -la /usr/share/nginx/html/resumes || echo "Resumes directory not found"
- echo "Checking HTTP response..."
- curl -I http://localhost:5173 || { echo "HTTP request failed"; exit 1; } - curl -I http://localhost:5173 || { echo "HTTP request failed"; exit 1; }
- echo "Deployment confirmed successfully" - echo "Deployment confirmed successfully"
@ -112,12 +109,16 @@ steps:
- docker system prune -f --volumes - docker system prune -f --volumes
- > - >
for img in $(docker images frontend --format "{{.Tag}}" | grep -v $(cat /home/mnisyif/docker-containers/mnisyif/frontend/version.txt)); do for img in $(docker images frontend --format "{{.Tag}}" | grep -v $(cat /home/mnisyif/docker-containers/mnisyif/frontend/version.txt)); do
docker rmi frontend:$img || true; docker rmi frontend:$img || true
done done
- echo "Cleanup completed" - echo "Cleanup completed"
trigger: # trigger:
branch: # branch:
- master # - master
event: # event:
- push # - push
when:
- branch: master
event: push

View file

@ -2,7 +2,7 @@
<html lang="en"> <html lang="en">
<head> <head>
<meta charset="UTF-8" /> <meta charset="UTF-8" />
<link rel="icon" type="image/svg+xml" href="/logos/logo.png" /> <link rel="icon" type="image/svg+xml" href="/logos/favicon.svg" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Murtadha Nisyif | Portfolio</title> <title>Murtadha Nisyif | Portfolio</title>
</head> </head>

View file

@ -2,52 +2,147 @@
{ {
"id": 1, "id": 1,
"title": "PaperKeypad", "title": "PaperKeypad",
"category": "Misc", "category": ["Misc"],
"images": ["/assets/projects/keypad0.jpg"], "images": ["/assets/projects/keypad0.jpg"],
"description": "Ever need to use a keyboard, but you got only your phone and a printer, PaperKeypad is a keypad that is made of paper.", "description": "Ever need to use a keyboard, but you got only your phone and a printer, PaperKeypad is a keypad that is made of paper.",
"technologies": ["Java", "JavaFX", "Android Studio"], "technologies": ["Java", "JavaFX", "Android Studio"],
"features": ["Mobile sensor manipulation", "Responsive design"], "features": ["Mobile sensor manipulation", "Responsive design"],
"githubLink": "https://github.com/betato/PaperKeypad" "githubLink": "https://github.com/betato/PaperKeypad",
"date": 2019
}, },
{ {
"id": 2, "id": 2,
"title": "StonkBot", "title": "StonkBot",
"category": "Misc", "category": ["Misc"],
"images": ["/assets/projects/stonkbot0.jpg"], "images": ["/assets/projects/stonkbot0.jpg"],
"description": "The fear of losing money is common among first-time and seasoned investors alike. This inspired the creation of Stonk Bot, a fantasy trading platform that can be implemented in Discord.", "description": "The fear of losing money is common among first-time and seasoned investors alike. This inspired the creation of Stonk Bot, a fantasy trading platform that can be implemented in Discord.",
"technologies": ["Python", "VS Code", "Matplotlib", "Financial Modeling Prep API", "Discord API"], "technologies": ["Python", "VS Code", "Matplotlib", "Financial Modeling Prep API", "Discord API"],
"features": ["Buy shares", "Sell shares", "View stock information", "View personal portfolio", "View leaderboard"], "features": ["Buy shares", "Sell shares", "View stock information", "View personal portfolio", "View leaderboard"],
"githubLink": "https://github.com/aidanbruneel/stonkbot", "githubLink": "https://github.com/aidanbruneel/stonkbot",
"liveLink": "https://discord.com/invite/tQNkk7v7R8" "liveLink": "https://discord.com/invite/tQNkk7v7R8",
"date": 2022
}, },
{ {
"id": 3, "id": 3,
"title": "Car Model Classification", "title": "Car Model Classification",
"category": "Machine Learning", "category": ["Machine Learning"],
"images": ["/assets/projects/carmodelclass0.png"], "images": ["/assets/projects/carmodelclass0.png"],
"description": "Developing a computer vision application to identify a vehicle model from a given image is an interesting and challenging problem to solve. Challenge of this problem is that different vehicle models can appear very similar and the same vehicle can look different and hard to identify depending on lighting conditions, angle and many other factors. In this project, I decided to train a Convolutional Neural Network(CNN) to generate a model that can identify a given vehicle model.", "description": "Developing a computer vision application to identify a vehicle model from a given image is an interesting and challenging problem to solve. Challenge of this problem is that different vehicle models can appear very similar and the same vehicle can look different and hard to identify depending on lighting conditions, angle and many other factors. In this project, I decided to train a Convolutional Neural Network(CNN) to generate a model that can identify a given vehicle model.",
"technologies": ["Python", "Tensorflow", "CNN", "Deep learning", "ResNet", "EfficientNet", "Stanford Cars Dataset"], "technologies": ["Python", "Tensorflow", "CNN", "Deep learning", "ResNet", "EfficientNet", "Stanford Cars Dataset"],
"features": ["Buy shares", "Sell shares", "View stock information", "View personal portfolio", "View leaderboard"], "features": ["Buy shares", "Sell shares", "View stock information", "View personal portfolio", "View leaderboard"],
"githubLink": "https://github.com/mnisyif/carClassificationModel" "githubLink": "https://github.com/mnisyif/carClassificationModel",
"date": 2022
}, },
{ {
"id": 4, "id": 4,
"title": "Memory Allocation Simulations", "title": "Memory Allocation Simulations",
"category": "Misc", "category": ["Misc"],
"images": ["/assets/projects/memallc0.png"], "images": ["/assets/projects/memallc0.png"],
"description": "This implementation uses doubly linked list to simulate memory allocation given 4 different memory management algorithms", "description": "This implementation uses doubly linked list to simulate memory allocation given 4 different memory management algorithms",
"technologies": ["C", "CMake", "Data structures"], "technologies": ["C", "CMake", "Data structures"],
"features": ["First fit", "Best fit", "Next fit", "Worst fit"], "features": ["First fit", "Best fit", "Next fit", "Worst fit"],
"githubLink": "https://github.com/mnisyif/MemoryAllocationAlgorithm/tree/main" "githubLink": "https://github.com/mnisyif/MemoryAllocationAlgorithm/tree/main",
"date": 2022
}, },
{ {
"id": 5, "id": 5,
"title": "Portfolio Website", "title": "Transformer-based Semantic Transcoding",
"category": "Web Development", "category": ["Machine Learning"],
"images": ["/assets/projects/memallc0.png"], "images": ["/assets/projects/semantic01.png"],
"description": "This implementation uses doubly linked list to simulate memory allocation given 4 different memory management algorithms", "description": "Developed PyTorch models for E2E semantic transcoding, deployed on Xilinx SoC boards using Vitis AI™",
"technologies": ["C", "CMake", "Data structures"], "technologies": ["PyTorch", "Vitis AI", "Xilinx SoC", "Machine Learning", "C++"],
"features": ["First fit", "Best fit", "Next fit", "Worst fit"], "features": ["E2E semantic transcoding", "Hardware acceleration", "SoC deployment", "C++ deployment"],
"githubLink": "https://github.com/mnisyif/MemoryAllocationAlgorithm/tree/main" "githubLink": "https://github.com/mnisyif/masters-research",
"date": 2024
},
{
"id": 6,
"title": "Clean Architecture C# Backend",
"category": ["Web Development"],
"images": ["/assets/projects/clean_architecture_backend.png"],
"description": "Engineered a scalable portfolio website backend using C#, adhering to Clean Architecture principles and implementing CI/CD pipeline for efficient deployment",
"technologies": ["C#", "Clean Architecture", "CI/CD", "REST Api"],
"features": ["Scalable backend", "Clean Architecture implementation", "Automated deployment", "RESTful"],
"githubLink": "https://github.com/mnisyif/portfolio-backend",
"date": 2024
},
{
"id": 7,
"title": "DevOps Homelab Maestro",
"category": ["DevOps"],
"images": ["/assets/projects/homelab_maestro.png"],
"description": "Orchestrating a robust homelab environment with Docker containers, Kubernetes clusters, Ceph distributed storage, and CI/CD pipelines for seamless application deployment",
"technologies": ["Docker", "Kubernetes", "Ceph", "CI/CD"],
"features": ["Containerized applications", "Orchestration", "Distributed storage", "Automated deployment"],
"date": 2023
},
{
"id": 8,
"title": "RL Dynamic Noise Cancelling",
"category": ["Machine Learning"],
"images": ["/assets/projects/noise_cancelling.png"],
"description": "Implemented real-time Automatic Noise Filtering using Reinforcement Learning and Dynamic Sparse Training in PyTorch",
"technologies": ["PyTorch", "Reinforcement Learning", "Dynamic Sparse Training", "Jupyter Notebooks"],
"features": ["Real-time filtering", "Automatic noise cancellation", "Sparse training", "Interactive development"],
"githubLink": "https://github.com/mnisyif/rl-noise-cancelling",
"date": 2023
},
{
"id": 9,
"title": "Real-Time Text-to-Braille",
"category": ["Embedded Systems"],
"images": ["/assets/projects/braille01.jpg","/assets/projects/braille02.jpg"],
"description": "Built a Raspberry Pi device for real-time image-to-Braille conversion, enhancing accessibility for the deaf-blind community",
"technologies": ["Raspberry Pi", "Image Processing", "OCR", "Python"],
"features": ["Real-time conversion", "Low-cost OCR algorithm", "Lookup table for Braille conversion", "Accessibility enhancement"],
"date": 2023
},
{
"id": 10,
"title": "ZAMAZ UTI Diagnosis",
"category": ["Embedded Systems"],
"images": ["/assets/projects/zamaz01.jpg","/assets/projects/zamaz02.jpg"],
"description": "Developed a Raspberry Pi-based system for automated urine test analysis, achieving 16x faster results than standard methods",
"technologies": ["Raspberry Pi", "Python", "Image Processing", "Healthcare Technology"],
"features": ["Automated analysis", "Pixel-based concentration calculation", "E. Coli and Staph bacteria detection", "Rapid results"],
"date": 2022
},
{
"id": 11,
"title": "HAM10K Image Classification with Deep Networks",
"category": ["Machine Learning"],
"images": ["/assets/projects/ham10k_classification.png"],
"description": "Developed and compared three deep learning models (MLP+PCA, DCNN, RegNetY-320) for skin cancer classification using the HAM10000 dataset, achieving 96.89% accuracy with RegNetY-320",
"technologies": ["PyTorch", "Deep Learning", "CNN", "RegNet", "PCA", "Python"],
"features": ["Multi-model comparison", "Data balancing and augmentation", "High accuracy classification", "Medical image analysis"],
"githubLink": "https://github.com/nithinprasad94/ENGG6600_DL_Final_Project",
"liveLink":"https://youtu.be/zHbRmIn7gPo",
"date": 2023
},
{
"id": 12,
"title": "Heart Disease Prediction Web App",
"category": ["Machine Learning", "Web Development"],
"images": ["/assets/projects/heartdis01.png"],
"description": "Developed a Flask-based web application that predicts the likelihood of heart disease using machine learning models. The app processes user input, applies feature encoding and scaling, and provides instant predictions.",
"technologies": [
"Python",
"Flask",
"NumPy",
"Scikit-learn",
"Pickle",
"HTML",
"Machine Learning"
],
"features": [
"User-friendly web interface for input",
"Real-time prediction using pre-trained model",
"Feature encoding and scaling",
"Integration of multiple ML preprocessing steps",
"Handling of both categorical and numerical inputs"
],
"githubLink": "https://github.com/zeyadghulam/engg6600-assignment3",
"date":2023
} }
] ]

Binary file not shown.

After

Width:  |  Height:  |  Size: 248 B

View file

@ -0,0 +1,30 @@
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg version="1.0" xmlns="http://www.w3.org/2000/svg"
width="257.000000pt" height="257.000000pt" viewBox="0 0 257.000000 257.000000"
preserveAspectRatio="xMidYMid meet">
<g transform="translate(0.000000,257.000000) scale(0.100000,-0.100000)"
fill="#000000" stroke="none">
<path d="M1 2043 l1 -528 23 90 c60 238 179 440 362 616 173 166 351 266 578
324 l90 23 -527 1 -528 1 1 -527z"/>
<path d="M1595 2545 c238 -60 440 -179 616 -362 103 -108 163 -191 222 -308
67 -133 105 -254 130 -405 2 -14 5 228 6 538 l1 562 -532 -1 -533 -1 90 -23z"/>
<path d="M1056 2544 c-243 -44 -481 -165 -665 -338 -131 -124 -277 -364 -329
-541 -70 -234 -70 -516 0 -750 52 -177 198 -417 329 -541 138 -130 348 -253
514 -302 177 -53 415 -67 591 -37 250 44 486 163 673 339 131 124 277 364 329
541 70 234 70 516 0 750 -49 166 -172 376 -302 514 -124 131 -364 277 -541
329 -175 52 -427 67 -599 36z m812 -1128 c171 -101 313 -181 316 -178 4 3 6
86 6 184 l0 178 115 0 115 0 0 -305 0 -305 -117 0 -118 0 -310 180 -310 179
-3 -177 c-2 -125 -6 -178 -15 -184 -6 -4 -65 -8 -129 -8 l-118 0 0 155 0 156
-151 -156 -151 -155 -142 0 -141 0 -152 152 -153 153 0 -153 0 -152 -120 0
-120 0 0 305 0 305 118 0 118 0 84 -87 c47 -49 147 -153 224 -231 l140 -144
231 236 230 237 121 -1 120 0 312 -184z"/>
<path d="M2560 1105 c0 -85 -75 -309 -149 -442 -82 -151 -244 -330 -391 -435
-153 -108 -354 -187 -560 -221 -14 -2 230 -5 543 -6 l567 -1 0 565 c0 311 -2
565 -5 565 -3 0 -5 -11 -5 -25z"/>
<path d="M1 533 l-1 -533 563 1 c309 1 551 4 537 6 -151 25 -272 63 -405 130
-117 59 -200 119 -308 222 -183 176 -302 378 -362 616 l-23 90 -1 -532z"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 MiB

After

Width:  |  Height:  |  Size: 249 KiB

Before After
Before After

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

View file

@ -13,6 +13,8 @@ import InfoSection from "./shared/components/info/InfoSection";
import styles from "./App.module.css"; import styles from "./App.module.css";
import { fetchEducationData, fetchExperienceData, fetchPersonalData, fetchProjectsData } from "./utils/dataFetcher";
function App() { function App() {
const [educationData, setEducationData] = useState([]); const [educationData, setEducationData] = useState([]);
const [experienceData, setExperienceData] = useState([]); const [experienceData, setExperienceData] = useState([]);
@ -20,35 +22,21 @@ function App() {
const [personalData, setPersonalData] = useState([]); const [personalData, setPersonalData] = useState([]);
useEffect(() => { useEffect(() => {
const fetchEducationData = async () => { const fetchData = async () => {
const response = await fetch("/assets/data/educationData.json"); const education = await fetchEducationData();
const data = await response.json(); setEducationData(education);
setEducationData(data);
const experience = await fetchExperienceData();
setExperienceData(experience);
const projects = await fetchProjectsData();
setProjectsData(projects);
const personal = await fetchPersonalData();
setPersonalData(personal);
}; };
const fetchExperienceData = async () => { fetchData();
const response = await fetch("/assets/data/experienceData.json");
const data = await response.json();
setExperienceData(data);
};
const fetchProjectsData = async () => {
const response = await fetch("/assets/data/projectsData.json");
const data = await response.json();
setProjectsData(data);
};
const fetchPersonalData = async () => {
const response = await fetch("/assets/data/personalData.json");
const data = await response.json();
setPersonalData(data);
// console.log(data)
};
fetchEducationData();
fetchExperienceData();
fetchProjectsData();
fetchPersonalData();
}, []); }, []);
return ( return (

View file

@ -17,13 +17,16 @@ function Projects({ title, data }) {
}, []); }, []);
const categories = useMemo(() => { const categories = useMemo(() => {
const cats = new Set(data.map((project) => project.category)); const cats = new Set(data.flatMap((project) => project.category));
return ["All", ...Array.from(cats)]; return ["All", ...Array.from(cats)];
}, [data]); }, [data]);
const filteredProjects = useMemo(() => { const sortedAndFilteredProjects = useMemo(() => {
if (activeFilter === "All") return data; let filteredProjects = activeFilter === "All"
return data.filter((project) => project.category === activeFilter); ? data
: data.filter((project) => project.category.includes(activeFilter));
return filteredProjects.sort((a, b) => b.date - a.date);
}, [data, activeFilter]); }, [data, activeFilter]);
const handleFilterClick = (category) => { const handleFilterClick = (category) => {
@ -41,14 +44,23 @@ function Projects({ title, data }) {
<h2 className={styles.sectionTitle}>{title}</h2> <h2 className={styles.sectionTitle}>{title}</h2>
<div className={styles.filterContainer}> <div className={styles.filterContainer}>
{categories.map((category) => ( {categories.map((category) => (
<button key={category} className={`${styles.filterButton} ${activeFilter === category ? styles.active : ""}`} onClick={() => handleFilterClick(category)}> <button
key={category}
className={`${styles.filterButton} ${activeFilter === category ? styles.active : ""}`}
onClick={() => handleFilterClick(category)}
>
{category} {category}
</button> </button>
))} ))}
</div> </div>
<div className={styles.projectGrid}> <div className={styles.projectGrid}>
{filteredProjects.map((project) => ( {sortedAndFilteredProjects.map((project) => (
<ProjectCard key={project.id} project={project} onClick={openModal} className={animatingOut ? styles.fadeOut : styles.fadeIn} /> <ProjectCard
key={project.id}
project={project}
onClick={openModal}
className={animatingOut ? styles.fadeOut : styles.fadeIn}
/>
))} ))}
</div> </div>
{selectedProject && <ProjectModal project={selectedProject} onClose={closeModal} />} {selectedProject && <ProjectModal project={selectedProject} onClose={closeModal} />}

View file

@ -1,7 +1,44 @@
import React from "react"; import React, { useRef, useEffect, useState } from "react";
import styles from "./ProjectCard.module.css"; import styles from "./ProjectCard.module.css";
function ProjectCard({ project, onClick, className }) { function ProjectCard({ project, onClick, className }) {
const [truncatedDescription, setTruncatedDescription] = useState(project.description);
const descriptionRef = useRef(null);
const formatList = (items) => {
return items.map((item, index, arr) => (
<React.Fragment key={index}>
{item}
{index < arr.length - 1 && <span className={styles.separator}>, </span>}
</React.Fragment>
));
};
useEffect(() => {
const truncateDescription = () => {
const element = descriptionRef.current;
if (!element) return;
const maxHeight = parseInt(window.getComputedStyle(element).lineHeight) * 4; // 4 lines
let text = project.description;
element.textContent = text;
while (element.scrollHeight > maxHeight && text.length > 0) {
text = text.slice(0, -1);
element.textContent = text + '...';
}
setTruncatedDescription(element.textContent);
};
truncateDescription();
window.addEventListener('resize', truncateDescription);
return () => {
window.removeEventListener('resize', truncateDescription);
};
}, [project.description]);
return ( return (
<div className={`${styles.card} ${className}`} onClick={() => onClick(project)}> <div className={`${styles.card} ${className}`} onClick={() => onClick(project)}>
<div className={styles.imageSlider}> <div className={styles.imageSlider}>
@ -9,8 +46,14 @@ function ProjectCard({ project, onClick, className }) {
</div> </div>
<div className={styles.content}> <div className={styles.content}>
<h3 className={styles.title}>{project.title}</h3> <h3 className={styles.title}>{project.title}</h3>
<p className={styles.category}>{project.category}</p> <div className={styles.categories}>
<p className={styles.description}>{project.description}</p> {formatList(project.category)}
</div>
<p ref={descriptionRef} className={styles.description}>{truncatedDescription}</p>
<div className={styles.technologies}>
{formatList(project.technologies)}
</div>
{/* <p className={styles.date}>{project.date}</p> */}
</div> </div>
</div> </div>
); );

View file

@ -5,9 +5,10 @@
overflow: hidden; overflow: hidden;
transition: transform 0.3s ease; transition: transform 0.3s ease;
cursor: pointer; cursor: pointer;
height: 450px; /* Fixed height for the card */
display: flex; display: flex;
flex-direction: column; flex-direction: column;
height: auto;
min-height: 450px;
} }
.card:hover { .card:hover {
@ -32,7 +33,6 @@
display: flex; display: flex;
flex-direction: column; flex-direction: column;
padding: 1rem; padding: 1rem;
overflow: hidden;
} }
.title { .title {
@ -42,7 +42,7 @@
color: #333; color: #333;
} }
.category { .categories {
font-size: 0.8rem; font-size: 0.8rem;
color: #666; color: #666;
margin-bottom: 0.5rem; margin-bottom: 0.5rem;
@ -51,10 +51,24 @@
.description { .description {
font-size: 0.9rem; font-size: 0.9rem;
color: #666; color: #666;
flex-grow: 1; margin-bottom: 0.5rem;
overflow: hidden; overflow: hidden;
display: -webkit-box; line-height: 1.4;
-webkit-line-clamp: 4; /* Adjust this number to show more or fewer lines */ max-height: calc(1.4em * 4); /* 4 lines of text */
-webkit-box-orient: vertical; }
text-overflow: ellipsis;
.technologies {
font-size: 0.8rem;
color: #0066cc;
margin-bottom: 0.5rem;
}
.date {
font-size: 0.8rem;
color: #999;
margin-top: auto;
}
.separator {
margin: 0 2px;
} }

View file

@ -8,7 +8,7 @@ const ResumeDownloader = ({ resumeLink }) => {
const link = document.createElement("a"); const link = document.createElement("a");
link.href = resumeLink; link.href = resumeLink;
console.log(link.href); console.log(link.href);
link.download = "Murtadha.pdf"; link.download = "Murtadha_Nisyif_Resume.pdf";
link.target = "_blank"; link.target = "_blank";
link.rel = "noopener noreferrer"; link.rel = "noopener noreferrer";

19
src/utils/dataFetcher.js Normal file
View file

@ -0,0 +1,19 @@
export const fetchEducationData = async () => {
const response = await fetch("/assets/data/educationData.json");
return await response.json();
};
export const fetchExperienceData = async () => {
const response = await fetch("/assets/data/experienceData.json");
return await response.json();
};
export const fetchProjectsData = async () => {
const response = await fetch("/assets/data/projectsData.json");
return await response.json();
};
export const fetchPersonalData = async () => {
const response = await fetch("/assets/data/personalData.json");
return await response.json();
};

View file

@ -1 +1 @@
0.12.1 0.12.4