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Abstract—The evolution of network systems is driven by the
increasing demand for higher data transmission volumes and
reduced latency. This paper presents a semantic method to reduce
latency in core network systems to accommodate the growing
demand for high-speed data transmission. We minimize unnec-
essary transmissions and optimize bandwidth by prioritizing data
relevance through semantic communication technologies. Our
approach utilizes a transformer-based model from edge servers
to the cloud to achieve minimal end-to-end latency. Experimental
results demonstrate that our methods can reduce latency by up
to 30%, offering a scalable solution that significantly enhances
network performance and efficiency.

Index Terms—MEC, 6G, Semantic communication.

I. INTRODUCTION

The evolution of network systems is fundamentally driven
by the escalating demand for higher data transmission volumes
and reduced latency in data exchange [1]. This trend is pri-
marily due to the proliferation of smart devices, the increasing
complexity of applications, and the rise in connected devices.
As a result, next-generation networks require faster data trans-
mission rates to handle the enormous data traffic [1] [2]. For
instance, the core network development aims to achieve a
thousandfold increase in capacity and deliver data rates up
to 10 Gbps per user. These advancements are necessary to
support applications such as augmented reality (AR), virtual
reality (VR), and the Internet of Things (IoT), which demand
low latency and high reliability [1] [2]. Additionally, the
continuous growth in global Internet traffic and the need for
higher Quality of Service (QoS) have made it imperative to
rely on Al-based systems. These systems are required to meet
the ever-increasing user demands for higher data rates, reduced
latency, and ensuring seamless data exchanges [3].

Edge computing has emerged as a solution to minimize
latency by processing data closer to the end-user, thus en-
hancing real-time responsiveness and reducing the need for
long-distance data transmission to be processed on the cloud
[4]. Data processing and transmission can be further optimized
by integrating Al and semantic transcoding within edge-to-
cloud systems. Al algorithms dynamically manage network re-
sources, predict traffic patterns, and enhance decision-making
at the edge [5]. Simultaneously, semantic communication
ensures efficient, context-aware data exchange between edge
devices and cloud infrastructure, supporting latency-sensitive
applications effectively [6].

For example, semantic communication systems leverage Al
to understand and convey the meaning behind data, rather
than just transmitting raw data. This approach significantly

reduces the volume of data needing transmission, thereby
lowering latency and enhancing efficiency [6]. Furthermore,
Al at the edge can improve model training and deployment
through federated learning techniques, allowing for local data
processing while maintaining privacy and reducing bandwidth
usage [7].

For instance, several research works have shown that by us-
ing semantic communication, edge servers can act as semantic
relays, processing and interpreting data locally before sending
only the necessary semantic information to other devices or
servers [8] [7]. Indeed, this approach has been effectively uti-
lized in various applications, where real-time data processing
and low latency are critical [7]. By leveraging the capabilities
of semantic communication, edge-to-cloud-based systems can
operate more efficiently, making real-time decisions based on
the interpreted data [5]. However, despite the significant ad-
vancements in semantic communication between edge devices,
or edge servers to devices, there is a notable gap in the
research regarding its application between the edge and the
cloud. Current research works have yet to explore the potential
benefits of utilizing semantic communication to enhance data
exchange efficiency between edge and cloud data centers. This
presents an opportunity to develop methods that can extend the
benefits of semantic communication to the broader edge-to-
cloud architecture, potentially impacting how large-scale data
is processed and transmitted in distributed networks [9] [4].

Based on [10], this paper delves into the theoretical mod-
eling and empirical analysis to develop a comprehensive
latency measurement and optimization framework tailored for
Edge-Cloud networks. By integrating latency management
techniques, such as Al-driven resource allocation and semantic
communication, we propose methods to boost network perfor-
mance and contribute to the evolving landscape of network
technology. These methods provide scalable solutions to meet
the growing demands of the digital ecosystem. Through this
work, we expect to enhance the end-to-end network perfor-
mance that aligns with the QoS, reliability, and efficiency
requirements [4] - [5].

The rest of the paper is outlined as follows: Section II
details the related works in latency modeling and semantic
communications. Section III introduces the proposed semantic-
based optimized latency framework. Section IV outlines the
tools utilized, the measured metrics and the data collection
process. Section V lists experimental results, semantic mod-
els comparisons and data interpretation. Section VI presents
concluding remarks and future steps.



II. RELATED WORKS

This section surveys the state-of-the-art in modeling end-to-
end (E2E) networks, including recent advancements in seman-
tic communication transcoding techniques. By analyzing these
developments, we aim to elucidate prevailing trends, identify
challenges, and highlight future research avenues to optimize
E2E network performance through semantic transcoding.

A. E2E Latency Modeling

Coll-Perales et al.’s comprehensive methodology for dis-
secting latency components in cellular core networks has
significantly influenced this research [11]. Their E2E latency
model, defining critical components and quantifying delays
within network segments, has inspired our approach.

This work focuses on optimizing current core networks and
meet the stringent latency requirements of next-generation
networks. It addresses the need to understand how network
components contribute to overall latency. Coll-Perales et al.’s
model covers various components in different deployment
scenarios, including both single and multiple Mobile Network
Operators (MNOs), accounting for complexities in cross-MNO
data transmissions. Table I showcases the latency components
characterizing an E2E network application.

TABLE I: Latency components in E2E network

Parameter Description

lpoE Total time of data transmitted from on end to another

lenc Time required to encode and process data at the edge
server

Lradio Time required to transmit data wirelessly

ITN Time for data to travel through the transport network

len Time to pass data through the core network infrastructure

lUPE-AS Time for data to traverse from the User Plane Function

to the Application Server

las Time required to process data at the application server
(cloud)

lpp Time delay when transmitting data between different

Mobile Network Operators (MNOs)

The overall latency can be modelled as [11]:
lp2E = IraN + lon + lupras + las (1)
where [gay is further broken down into:
IRAN = lradio + TN (2)
And for applications supported by different MNOs:
lg2E = lLiadio + ITN + lon + lupr-as + las + lpp 3)

Their findings revealed that transport network and core
network latencies are significant contributors to total latency,
particularly in scenarios involving different MNOs where
peering points notably increase delays.

It is worth noting that [gj, is irrelevant to our proposed
model. Furthermore, the overall E2E network latency can be
modelled as:

lg2E = lenc + ItN + lon + lupras + las + [, 4
*when supporting different MNOs.

B. Semantic Communications

Semantic communications, an emerging paradigm, aims
to enhance data transmission efficiency by focusing on the
meaning of the data rather than merely its syntactic structure
[12]. This approach leverages advancements in Al and NLP
to understand and interpret the context and content of the
transmitted information, significantly reducing the volume of
data required while preserving its essential meaning [13] [14].

The integration of semantic understanding in communica-
tions marks a shift from traditional data transmission methods
that prioritize syntax over meaning [12]. Recent advancements
in Transformer-based architectures, such as the Swin Trans-
former [15], enhance semantic communication systems by
focusing on data relevance. The Swin Transformer, with its
hierarchical vision approach and shifted windowing scheme,
achieves high efficiency and flexibility in tasks like image
classification, object detection, and semantic segmentation.
Attention mechanisms are critical in these models [16], en-
abling the prioritization of relevant data, which is crucial for
bandwidth-limited systems. This preserves semantic integrity
and optimizes bandwidth usage, improving the quality and
efficiency of semantic communications.

The Wireless Image Transmission Transformer (WITT)
and Swin Joint Source-Channel Coding (SwinJSCC) leverage
the Swin Transformer to advance semantic communications.
WITT captures long-range information for high-resolution im-
age transmission, using a spatial modulation module to adapt
to varying channel conditions [17]. SwinJSCC enhances this
with Channel ModNet and Rate ModNet for dynamic adap-
tation to diverse channel conditions and transmission rates.
It outperforms traditional systems like BPG with 5G LDPC,
especially in high-resolution images, offering faster process-
ing and superior quality. Furthermore, SwinJSCC comes in
three sizes—small, base, and large—with varying parameters:
23.21 million, 33.07 million, and 52.07 million, respectively,
while ensuring lower upto 319.5 GFLOPs costs compared to
traditional DeepJSCC models 9851.6 GFLOPs [10].

In the context of edge-cloud computing, where direct chan-
nels with negligible noise are assumed, a crucial aspect is
optimizing end-to-end performance [10]:

(¢,0) = arg n(gigl Ex ~ p,Ej ~ pyild(z, )], (5)

where ¢ and 6 are the encoder and decoder parameters.
This optimization helps maximize computational resources
and bandwidth efficiency, ensuring high-quality transmission
and scalability. By leveraging this approach, SwinJSCC en-
hances real-time performance, making it ideal for various edge
computing applications

In our implementation, assuming a noise-free channel, the
distortion measure d(x,%) is still crucial. It ensures that
the encoder and decoder minimize approximation errors and
maintain high image fidelity. By optimizing this measure, we
guarantee that the reconstructed images closely match the
originals, achieving robust and accurate performance while
focusing on end-to-end (E2E) latency performance.



III. SEMANTIC EDGE-CLOUD COMPUTING MODEL

The proposed system model (Fig. 1) employs transformer
models at both the edge and cloud servers, following the ar-
chitectural principles of the WITT and SwinJSCC frameworks
[17], [10]. These models are selected for their efficiency in
semantic communications, critical for reducing latency in E2E
communications.
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Fig. 1: Overview of the proposed system model.

At the edge server, the encoder employs a transformer-based
architecture adept at semantic analysis and data prioritization,
ensuring that only the most relevant data is transmitted.
This mechanism minimizes unnecessary network traffic and
improves latency as it will be shown in the results section.
The model’s ability to discern semantic importance aligns with
WITT methodologies for image data, adapted for diverse data
types in various applications.

Conversely, the decoder reconstructs the semantic content
from the compressed data stream in the cloud using an opti-
mized transformer architecture. While WITT and SwinJSCC
focus on image data, their underlying principles apply to
various data types.
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Fig. 2: All possible latency components affecting E2E data
transmission

The system model illustrated in Fig. 2 showcases several
latency components in an end-to-end network. It depicts a
network architecture designed to facilitate communication be-
tween at least two edge servers over different Mobile Network
Operators (MNOs), connecting to a centralized cloud server
responsible for semantically decoding data from the edge
servers. Each cellular network features an edge server that
functions as an encoder, optimizing the data before it is sent
through the cellular core network.

Table II provides a concise overview of the critical network
latency assumptions used to evaluate communication delays
within our experimental setup. Each entry represents a distinct
aspect of latency within the network architecture, supported by
references from the relevant literature. These assumed values,
derived from the referenced papers, will form the basis for our
benchmarking and evaluation.

TABLE II: Network Latency Assumptions

Description Parameter  Value/Range Reference
Core Network len ~ 24 ms [2]
Cloud-based (E2E) lp2E [53.8, 150] ms [11]
UPF to AS lUPF-AS ~ 20 ms [18]
Edge / Cloud latencies  [as & lenc 13 ms resp. [10]
Local Peering Point lop 0.431 ms [11]

IV. EXPERIMENTAL SETUP

This section outlines the experimental setup used to evaluate
the performance of our models. It includes details on the
hardware setup, evaluation metrics, implementation details,
and the data collection process.

A. Setup and Evaluation metrics

The experiments were conducted on a high-performance
computing system running Ubuntu 22.04.4 LTS x86. The
hardware configuration included an Intel Xeon E5-2667 V3
operating at 3.196 GHz, 24 GB of RAM and a 150GB SSD.
The implementation utilized libraries like PyTorch 1.9.0 with
Python 3.8.19. Additional libraries included psutil for system
monitoring, threading for concurrent execution, pandas for
data manipulation, and seaborn for data visualization.

System performance metrics focused on computational
costs, specifically monitoring CPU and memory utilization
over time, to evaluate the resource efficiency of the models
during encoding and decoding processes.

B. Data Collection

For data collection, the models transmitted three random
images each from the Kodak and CLIC21 datasets. This
approach ensured a diverse set of images to evaluate the
performance of the encoding and decoding processes.

1) Reading the CPU Times: The logger reads CPU times
from the /proc/stat file on Linux systems, which contains
cumulative time statistics for different CPU states. Table III
lists the different CPU states logged in the /proc/stat file:

TABLE 1III: Description of different CPU states in
/proc/stat file
CPU States Description
user Time spent in user-mode processes (excluding nice)
nice Time spent in lower-priority user processes
system Time spent in kernel-mode processes
idle Time the CPU is not executing any process
/O wait Time waiting for I/O operations
irqg/softirq Time handling hardware/software interrupts




The created logger reads the cumulative CPU times at two
points in time separated by a specified interval. By calculating
the difference between these two readings, it determines the
time spent in each state during that interval.

The percentage of CPU utilization is calculated as:

Active Time
Total Time
where, Active Time = User + Nice + System + Interrupts
times, and Total Time = Active Time + Idle Time + I/O Wait.

Also, regarding memory utilization, it is calculated by
reading the memory statistics provided by the psutil
Python library, which uses data from system files like
/proc/meminfo. The relevant memory statistics include the
total system memory available, the memory currently used
by all running processes, and the memory available for use
without swapping.

Memory utilization in gigabytes (GB) is calculated as:

CPU Usage (%) = x 100 (6)

Used Memory (Bytes)
10243
V. EXPERIMENTAL ANALYSIS

Memory Usage (GB) =

(7

This section presents the CPU and memory utilization
results for the WITT and SwinJSCC models transcoding three
random images from both Kodak and CLIC21 datasets. The
performance trends for both the WITT and SwinJSCC models,
as visualized in the provided plots, offer valuable insights into
each model’s performance under operational stress.
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(a) CPU Utilization [%] vs Time [s] for Kodak dataset
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Fig. 3: Comparison of CPU Utilization for WITT and Swin-
JSCC models transmitting images from Kodak and CLIC21
datasets at CBR 1/8.
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Fig. 4: Comparison of Memory Utilization for WITT and
SwinJSCC models transmitting images from Kodak and
CLIC21 datasets at CBR 1/8.

A. CPU Utilization

The CPU utilization plots for the WITT and SwinJSCC
models reveal significant fluctuations in computational de-
mands, with both models showing relatively similar perfor-
mance. For the CLIC21 dataset, both models frequently hit
peaks over 85% CPU utilization (see Fig. 3b). These spikes re-
sult from complex operations like window partitioning, cyclic
shifting, and adaptive modulation based on SNR values within
the SwinTransformerBlock. The dynamic and conditional na-
ture of these operations contributes to the variability in CPU
usage. In contrast, while processing the Kodak dataset, both
models exhibit slightly higher CPU utilization, about 5% more
than with the CLIC21 dataset (see Fig. 3a). The models in the
Kodak dataset also tends to be relatively smoother compared
to the CLIC21 dataset, this can be due to the Kodak dataset’s
simplicity. Despite this simplicity, both models still hit highs
of over 80% CPU utilization during processing, indicating the
intensive nature of their operations.

While Kodak processing is more stable, the CLIC21 dataset
shows more fluctuations due to its complexity and the number
of features to be processed. In both datasets, WITT processes
images faster than SwinJSCC, with an interval of up to 3
seconds. The average processing time per image from the
Kodak dataset is around 5-6 seconds, while it takes around 45
seconds for each image in the CLIC21 dataset. This substantial
difference in processing time highlights the impact of image



complexity on computational efficiency.

It is also evident that CPU activity is intense during the
encoding and decoding phases, as observed from the intervals
where CPU utilization peaks. These observations underscore
the importance of optimizing both models for better handling
of complex datasets to achieve more consistent and efficient
performance (see Fig. 3b).

B. Memory Utilization

The memory utilization plots for the WITT and SwinJSCC
models reveal distinct patterns when processing images from
the Kodak and CLIC21 datasets (see Fig.4). For the Kodak
dataset, the average memory utilization of the WITT model
remains relatively stable (see Fig.4a). This stability can be
attributed to efficient memory handling within the SwinTrans-
formerBlock and the model’s structured processing.

The complexity of the datasets plays a significant role in
memory usage. Throughout the entire Kodak dataset pro-
cessing, the maximum memory utilization for WITT did not
exceed 1.5 GB, while for the CLIC21 dataset, it averaged
around 4.5 GB, demonstrating the higher memory demands for
more complex data (see Fig. 4b). Despite SwinJSCC having
similar memory utilization to WITT when processing the Ko-
dak dataset, it consumes up to 40% more memory on average
compared to the WITT memory consumption (approximately
1 GB more) and exhibits more intense fluctuations.

SwinJSCC uses approximately 40% more memory than
the WITT model, with a maximum of up to 5 GB of to-
tal memory usage, highlighting its higher memory demands
during transcoding operations. However, the adaptability of
the SwinJSCC attention mechanism, including the use of
window-based attention and a shifted window scheme, allows
it to dynamically adjust to varying data complexities. This
adaptability enables the SwinJSCC model to handle complex
patterns and dependencies effectively, making up for its higher
memory consumption.

These observations underscore the differences in memory
utilization efficiency between the WITT and SwinJSCC mod-
els. While both models exhibit high computational demands,
WITT manages memory usage more effectively, resulting in
more stable consumption patterns. Nevertheless, the adapt-
ability of the SwinJSCC model’s attention mechanism pro-
vides a significant advantage in handling diverse and complex
datasets.

VI. CONCLUSION

In this paper, we introduce a semantic method to re-
duce latency in core network systems, optimizing bandwidth
and minimizing unnecessary transmissions through semantic
communication technologies. Utilizing a transformer-based
model for edge-to-cloud data transmission, in our approach
significantly reduces transmission volume and lowers latency,
supporting next-generation applications like AR, VR, and IoT.
This research explores semantic transcoding within Edge-
Cloud computing paradigms, demonstrating potential improve-
ments in handling complex datasets. Future work will focus on

parallelizing encoding and decoding with GPUs, expected to
vastly improve processing speed and efficiency, while refining
algorithms to maintain low latency in resource-constrained
environments.
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