Update positions and projects entries
This commit is contained in:
parent
12b9e069c4
commit
19360e39d1
2 changed files with 20 additions and 23 deletions
Binary file not shown.
|
|
@ -117,22 +117,25 @@
|
||||||
\section{\color{blue}Relevant Work Experience}
|
\section{\color{blue}Relevant Work Experience}
|
||||||
\resumeSubHeadingListStart
|
\resumeSubHeadingListStart
|
||||||
\resumeSubheading
|
\resumeSubheading
|
||||||
{ML Engineer - Researcher}{Jan 2024 -- Dec 2024}
|
{MLOps Engineer - Researcher}{Jan 2024 -- Dec 2024}
|
||||||
{University of Guelph}{Guelph, Ontario}
|
{University of Guelph}{Guelph, Ontario}
|
||||||
\resumeItemListStart
|
\resumeItemListStart
|
||||||
\resumeItem {Pioneered transformer-based models for semantic data transmission, reducing latencies in E2E communications by 29\%, and reducing network bandwidth utilization by 30x}
|
\resumeItem {Collected latency data from diverse hardware setups and performed feature engineering to identify optimal correlations, enhancing model performance in varying network conditions}
|
||||||
\resumeItem {Authored deployable implementations in C on Kira SoCs with Vitis AI™, utilizing hardware acceleration achieving 15\% computional time reduction}
|
\resumeItem {Designed, implemented, and trained an adaptive model extension to the existing semantic communication transformer, improving real-time responses to network bandwidth fluctuations while maintaining at least 96\% accuracy}
|
||||||
\resumeItem {Published findings in CCECE 2024, showcasing improved data transmission latencies}
|
\resumeItem {Pioneered deployable transformer-based models for semantic data transmission, achieving 29\% lower latencies in end-to-end communications specifically 30x reduction in network bandwidth utilization}
|
||||||
\resumeItemListEnd
|
\resumeItem {Deployed existing PyTorch-based implementations onto Kira SoCs using Vitis AI™, leveraging hardware acceleration to achieve a 15\% reduction in computational time}
|
||||||
|
% \resumeItem {Published findings in CCECE 2024, showcasing improved data transmission latencies}
|
||||||
|
\resumeItemListEnd
|
||||||
|
|
||||||
\resumeSubheading
|
\resumeSubheading
|
||||||
{Software Developer}{Oct 2022 -- Oct 2023}
|
{Software Developer}{Oct 2022 -- Oct 2023}
|
||||||
{University of Guelph - Robotics Institute}{Guelph, Ontario}
|
{University of Guelph - Robotics Institute}{Guelph, Ontario}
|
||||||
\resumeItemListStart
|
\resumeItemListStart
|
||||||
\resumeItem {Developed ROS2 modules in C++ and Python in the process of migrating from a standalone Python implementation for an Assistive Robotic Feeding System for Elderly Individuals, accounting for multithreaded operations' integrity}
|
\resumeItem {Developed ROS2 modules in C++ and Python to migrate an Assistive Robotic Feeding System for Elderly Individuals, ensuring multithreaded operations' integrity}
|
||||||
\resumeItem {Co-authored a feedback loop in the React Native mobile app to provide analytics from 50+ users reporting users' interactions to enhance user experience and app performance}
|
\resumeItem {Managed and maintained the codebase of a smart door application suite with a Node.js backend, React Native app, and Vue dashboard, enabling smartphone control of motorized doors and providing user analytics from over 50 users}
|
||||||
\resumeItem {Deployed a Node.js backend system in an EC2 instance, coupled with a PostgresDB to monitor and analyze users' activity as part of a research survey}
|
\resumeItem {Built a Jenkins CI/CD pipeline for automated building, testing, and deployment of Node.js backend, Vue frontend, and React Native app, with Dockerized PostgresDB for data handling}
|
||||||
\resumeItemListEnd
|
\resumeItem {Implemented Terraform for IaC to automate AWS resource provisioning, enhancing the scalability and reliability of the smart door system}
|
||||||
|
\resumeItemListEnd
|
||||||
|
|
||||||
\resumeSubheading
|
\resumeSubheading
|
||||||
{Information Technology Analyst}{Jul 2020 -- Oct 2020}
|
{Information Technology Analyst}{Jul 2020 -- Oct 2020}
|
||||||
|
|
@ -148,9 +151,9 @@
|
||||||
%-----------SKILLS-----------
|
%-----------SKILLS-----------
|
||||||
\section{\color{blue}Skills}
|
\section{\color{blue}Skills}
|
||||||
\begin{tabular}{ @{} >{\bfseries}l @{\hspace{3ex}}l }
|
\begin{tabular}{ @{} >{\bfseries}l @{\hspace{3ex}}l }
|
||||||
\small\textbf{\color{black}Languages:} &\small C/C++/C\#, Python, JavaScript, SQL, R, Java, HTML, MATLAB, CSS\\
|
\small\textbf{\color{black}Languages:} &\small C/C++/C\#, Python, JavaScript, SQL, Java, HTML, MATLAB, CSS\\
|
||||||
\small\textbf{\color{black}Frameworks:} &\small PyTorch, Node.JS, React, Express JS, .NET, TensorFlow, ROS, Django \\
|
\small\textbf{\color{black}Frameworks:} &\small PyTorch, Node.JS, React, Express JS, .NET, TensorFlow, ROS, Django \\
|
||||||
\small\textbf{\color{black}Cloud \& DB:} &\small Docker, AWS, Kubernetes, WoodPecker CI, PostgresSQL, MongoDB, MySQL, SQLite \\
|
\small\textbf{\color{black}Cloud \& DB:} &\small Docker, AWS, Kubernetes, PostgresSQL, MongoDB, MySQL, SQLite \\
|
||||||
\small\textbf{\color{black}Tools \& Protocols:} &\small Git, Jenkins, Postman, Flask, Swagger, HTTP, TCP, Jira, CMake \\
|
\small\textbf{\color{black}Tools \& Protocols:} &\small Git, Jenkins, Postman, Flask, Swagger, HTTP, TCP, Jira, CMake \\
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\vspace{-8pt}
|
\vspace{-8pt}
|
||||||
|
|
@ -158,17 +161,11 @@
|
||||||
%-----------PROJECTS-----------
|
%-----------PROJECTS-----------
|
||||||
\section{\color{blue}Projects}
|
\section{\color{blue}Projects}
|
||||||
\resumeSubHeadingListStart
|
\resumeSubHeadingListStart
|
||||||
\resumeSubItem{\textbf{\color{black}Transformer-based Semantic Transcoding:}}
|
\resumeSubItem{\textbf{\color{black}Full-stack application}}
|
||||||
{Developed PyTorch models for E2E semantic transcoding, deployed on Xilinx SoC boards using Vitis AI™}
|
{Developed and Dockerized a full-stack portfolio using React and Java (adhering to microservices architecture) and deployed it on a home server using a Jenkins CI/CD pipeline and Minio S3 bucket}
|
||||||
|
|
||||||
\resumeSubItem{\textbf{\color{black}CI/CD React Portfolio Website}}
|
\resumeSubItem{\textbf{\color{black}DevOps Homelab}}
|
||||||
{Designed and developed a personal portfolio website using React. Implemented a CI/CD pipeline to automate the building, testing, and deployment process}
|
{Orchestrating a robust homelab environment with dockerized apps, virtual machines, Kubernetes clusters for load distribution, Ceph distributed storage and CI/CD pipelines for seamless deployment of personal applications}
|
||||||
|
|
||||||
\resumeSubItem{\textbf{\color{black}Clean Architecture C\# Backend:}}
|
|
||||||
{Engineered a scalable portfolio website backend using C\#, adhering to Clean Architecture and REST API principles and implementing CI/CD pipeline for efficient deployment}
|
|
||||||
|
|
||||||
\resumeSubItem{\textbf{\color{black}DevOps Homelab Maestro:}}
|
|
||||||
{Orchestrating a robust homelab environment with Docker containers, Kubernetes clusters, Ceph distributed storage, and CI/CD pipelines for seamless application deployment}
|
|
||||||
|
|
||||||
\resumeSubItem{\textbf{\color{black}RL Dynamic Noise Cancelling:}}
|
\resumeSubItem{\textbf{\color{black}RL Dynamic Noise Cancelling:}}
|
||||||
{Implemented real-time Automatic Noise Filtering using Reinforcement Learning and Dynamic Sparse Training in PyTorch}
|
{Implemented real-time Automatic Noise Filtering using Reinforcement Learning and Dynamic Sparse Training in PyTorch}
|
||||||
|
|
@ -195,7 +192,7 @@
|
||||||
{Boosting Edge-to-Cloud Data Transmission Efficiency with Semantic Transcoding}{}
|
{Boosting Edge-to-Cloud Data Transmission Efficiency with Semantic Transcoding}{}
|
||||||
{Published @ IEEE CCECE (Aug 2024)}{}
|
{Published @ IEEE CCECE (Aug 2024)}{}
|
||||||
\resumeItemListStart
|
\resumeItemListStart
|
||||||
\resumeItem {Explored a novel approach to incorporate semantic transcoding in edge-cloud system to reduce data transmission rates}
|
\resumeItem {Explored a novel approach to incorporate semantic transcoding in edge-cloud system to reduce data latency rates}
|
||||||
\resumeItemListEnd
|
\resumeItemListEnd
|
||||||
\resumeSubHeadingListEnd
|
\resumeSubHeadingListEnd
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue