job(software): update resume layout, and add more information for each project
This commit is contained in:
parent
9c831333c9
commit
7899e41093
2 changed files with 34 additions and 31 deletions
Binary file not shown.
|
|
@ -117,16 +117,11 @@
|
||||||
\end{tabular*}
|
\end{tabular*}
|
||||||
\vspace{-10pt}
|
\vspace{-10pt}
|
||||||
|
|
||||||
%----------Summary----------
|
|
||||||
\section{\color{blue}Summary}
|
|
||||||
Versatile software engineer with hands-on experience in backend systems, machine learning, DevOps, and embedded platforms. Proficient in Python, C++, Rust and JS, with a portfolio of applied AI, web services, and hardware integrated projects. Passionate about writing clean, testable code and clearly communicating technical insights
|
|
||||||
\vspace{-5pt}
|
|
||||||
|
|
||||||
%----------Experience----------
|
%----------Experience----------
|
||||||
\section{\color{blue}Relevant Work Experience}
|
\section{\color{blue}Relevant Work Experience}
|
||||||
\resumeSubHeadingListStart
|
\resumeSubHeadingListStart
|
||||||
\resumeSubheading
|
\resumeSubheading
|
||||||
{Software Engineer - Machine Learning}{Jan 2024 -- Dec 2024}
|
{Software Engineer - Machine Learning}{Jan 2024 -- Aug 2025}
|
||||||
{University of Guelph}{Guelph, Ontario}
|
{University of Guelph}{Guelph, Ontario}
|
||||||
\resumeItemListStart
|
\resumeItemListStart
|
||||||
\resumeItem {Drove a \textbf{30$\times$ bandwidth reduction} and \textbf{29\% latency cut} by integrating Swin-Transformer semantic compression into an edge-cloud pipeline, while keeping image fidelity $\ge$88\%}
|
\resumeItem {Drove a \textbf{30$\times$ bandwidth reduction} and \textbf{29\% latency cut} by integrating Swin-Transformer semantic compression into an edge-cloud pipeline, while keeping image fidelity $\ge$88\%}
|
||||||
|
|
@ -156,37 +151,45 @@
|
||||||
\resumeItemListEnd
|
\resumeItemListEnd
|
||||||
|
|
||||||
\resumeSubHeadingListEnd
|
\resumeSubHeadingListEnd
|
||||||
|
\vspace{-8pt}
|
||||||
|
|
||||||
%-----------SKILLS-----------
|
%-----------EDUCATION-----------
|
||||||
|
\section{\color{blue}Education}
|
||||||
|
\resumeSubHeadingListStart
|
||||||
|
\resumeSchoolItem{University of Guelph $|$ \color{blue} \emph{MASc. - Computer Engineering}}{}
|
||||||
|
\resumeSchoolItem{University of Guelph $|$ \color{blue} \emph{B.Eng - Comp. Engineering, B.Comp. - Comp. Science}}{}
|
||||||
|
\resumeSubHeadingListEnd
|
||||||
|
\vspace{-8pt}
|
||||||
|
|
||||||
|
%-----------SKILLS-----------
|
||||||
\section{\color{blue}Skills}
|
\section{\color{blue}Skills}
|
||||||
\begin{tabular}{ @{} >{\bfseries}l @{\hspace{1.2ex}}l}
|
\begin{tabularx}{\textwidth}{ @{} >{\bfseries}l X }
|
||||||
\textbf{Languages:} &Python, C++, JavaScript, C, SQL, Java, C\#, Bash \\
|
\textbf{Skills:} & AI; DevOps; Software Testing; Cloud Computing; Data Analysis; ML; CI/CD \\
|
||||||
\textbf{Frameworks:} &Flask, FastAPI, Node.js, React, TensorFlow, PyTorch, ROS2 \\
|
\textbf{Technologies: } & Python; C++; C; JavaScript; Rust; HTML; Java; Bash; Flask; FastAPI; Swagger; Node.js; React; PyTorch; MongoDB; PostgreSQL; SQLite; Docker; Kubernetes; Git; Jenkins; Terraform; AWS \\
|
||||||
\textbf{Databases:} &MongoDB, PostgreSQL, SQLite \\
|
\textbf{Languages: } & English (Fluent); Arabic (Fluent)
|
||||||
\textbf{Tools:} &Docker, Kubernetes, Git, Jenkins, Terraform, AWS, Vitis AI \\
|
\end{tabularx}
|
||||||
\end{tabular}
|
|
||||||
\vspace{-8pt}
|
\vspace{-8pt}
|
||||||
|
|
||||||
%-----------PROJECTS-----------
|
%-----------PROJECTS-----------
|
||||||
\section{\color{blue}Projects}
|
\section{\color{blue}Projects}
|
||||||
\begin{itemize}[leftmargin=0.15in, label={}]
|
|
||||||
\item \textbf{Heart Disease Predictor} – Flask app with sklearn model, real-time prediction, and input feature scaling \vspace{-5pt}
|
|
||||||
\item \textbf{StonkBot} – Discord bot for fantasy stock trading using Python, Matplotlib, and live API feeds \vspace{-5pt}
|
|
||||||
\item \textbf{Car Model Classifier} – CNN trained on Stanford Cars dataset with ResNet/EfficientNet architectures\vspace{-5pt}
|
|
||||||
\item \textbf{Memory Allocator Simulator} – C implementation of First/Best/Worst fit memory management\vspace{-5pt}
|
|
||||||
\item \textbf{Braille Converter Device} – Raspberry Pi-based image-to-Braille translator for accessibility\vspace{-5pt}
|
|
||||||
\item \textbf{Clean Architecture Backend} – C\# backend for portfolio website, CI/CD-ready with REST API\vspace{-5pt}
|
|
||||||
\item \textbf{RL Noise Cancelling} – Real-time audio filtering using RL and sparse training (PyTorch)\vspace{-5pt}
|
|
||||||
\end{itemize}
|
|
||||||
\vspace{-10pt}
|
|
||||||
|
|
||||||
%-----------EDUCATION-----------
|
|
||||||
\section{\color{blue}Education}
|
|
||||||
\resumeSubHeadingListStart
|
\resumeSubHeadingListStart
|
||||||
\resumeSchoolItem{University of Guelph $|$ \color{blue} \emph{MASc. - Computer Engineering}}{}
|
\resumeSubItem{\textbf{\color{black}Personal Portfolio Website}}
|
||||||
\resumeSchoolItem{University of Guelph $|$ \color{blue} \emph{B.Comp. - Computer Science}}{}
|
{Full-Stack Developer: built with React frontend and Rust backend, integrated end-to-end Jenkins CI/CD and Docker deployment; reduced manual deployment time by 70\%}
|
||||||
\resumeSchoolItem{University of Guelph $|$ \color{blue} \emph{B.Eng. - Computer Engineering}}{}
|
|
||||||
|
\resumeSubItem{\textbf{\color{black}Home lab Administration}}
|
||||||
|
{Managed a fleet of 15 Docker containers hosting media services, websites, and game servers; implemented automated Let's Encrypt SSL issuance, Prometheus/ Grafana monitoring, and Fail2Ban SSH hardening, achieving 99.9\% uptime}
|
||||||
|
|
||||||
|
\resumeSubItem{\textbf{\color{black} Heart Disease Predictor}}
|
||||||
|
{Full-stack Flask-RESTful application with HTML/CSS/JavaScript frontend; trained on the UCI Heart Disease dataset (11 clinical features) achieving 95\% accuracy; implements input feature scaling for normalized, real-time predictions}
|
||||||
|
|
||||||
|
\resumeSubItem{\textbf{\color{black}Real-Time Noise cancelling with RL}}
|
||||||
|
{Built a custom OpenAl Gym environment in Python that leverages Dynamic Sparse Training (DST) and FFT-based audio processing (librosa) to adaptively filter noise; implemented a waveform-similarity reward and achieved up to 5209 FPS during PPO training}
|
||||||
|
|
||||||
\resumeSubHeadingListEnd
|
\resumeSubHeadingListEnd
|
||||||
\vspace{-8pt}
|
\vspace{-8pt}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue