Initial commit
This commit is contained in:
commit
1995df58ce
21 changed files with 6708 additions and 0 deletions
152
NoNeed/Bel_Data_Loader.ipynb
Normal file
152
NoNeed/Bel_Data_Loader.ipynb
Normal file
|
|
@ -0,0 +1,152 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "e2a5d1d7-6bb3-4e24-9067-880296de1fc9",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import imageio\n",
|
||||
"from skimage import color, transform\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "b37f1351-0a00-4a4b-9067-ea55a662bc80",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"main_folder = 'data/Bel_Training_Set/'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "76f41177-fd53-4bf6-9e75-ba1a98c414ff",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"subfolders = [f for f in os.listdir(main_folder) if os.path.isdir(os.path.join(main_folder, f))]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "706d2a6d-8147-42a1-ba19-3cc7108fcfea",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"image_data = []\n",
|
||||
"label_data = []"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "86841170-b9bc-46cf-b482-f2d653060bc0",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docnames = [\"Pixel \" + str(i) for i in range(1024)]\n",
|
||||
"docnames.insert(0, 'Label')\n",
|
||||
"df1 = pd.DataFrame(columns = docnames) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "d9e5d953-1652-47d3-a832-d71d87c2b7ee",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def add_to_dataset(x,y,z,l):\n",
|
||||
" y.at[z,'Label'] = l\n",
|
||||
" for i in range(0,1024):\n",
|
||||
" y.at[z,docnames[i+1]] = x[i]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "82fe02ed-8471-493f-aded-58c54edb7ef6",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"i = 0\n",
|
||||
"for subfolder in subfolders:\n",
|
||||
" subfolder_path = os.path.join(main_folder, subfolder)\n",
|
||||
" for filename in os.listdir(subfolder_path):\n",
|
||||
" \n",
|
||||
" file_path = os.path.join(subfolder_path, filename)\n",
|
||||
" if filename.lower().endswith('.ppm'):\n",
|
||||
" img_array = imageio.v2.imread(file_path)\n",
|
||||
" resized_img_array = transform.resize(img_array, (32, 32))\n",
|
||||
" gray_img_array = color.rgb2gray(resized_img_array)\n",
|
||||
" flattened_img_array = gray_img_array.flatten()\n",
|
||||
" add_to_dataset(flattened_img_array,df1,i,int(subfolder))\n",
|
||||
" i = i + 1\n",
|
||||
" #print(\"Image From\", int(subfolder), \"Image Name\", filename)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "7bdcd7d7-56f3-4b9f-924f-dd811dddf605",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df1.to_csv('bel_data_test.csv', index = False) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "12d9c974-85ed-4d10-af2e-0984a367d4be",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
152
NoNeed/Cro_Data_Loader.ipynb
Normal file
152
NoNeed/Cro_Data_Loader.ipynb
Normal file
|
|
@ -0,0 +1,152 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "0a9a579c-df1c-4742-a0ed-e3db27bdc3e4",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd \n",
|
||||
"import os\n",
|
||||
"import imageio\n",
|
||||
"from skimage import color, transform\n",
|
||||
"import numpy as np"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "99e5b7bf-4438-477c-9880-008fb864ae56",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"image_folder = 'data/Cro_Training_Set/'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "da337206-82a6-416c-b5db-04466695a7b4",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def convert_letter(x):\n",
|
||||
" if x == 'A':\n",
|
||||
" y = 0\n",
|
||||
" if x == 'B':\n",
|
||||
" y = 1\n",
|
||||
" if x == 'C':\n",
|
||||
" y = 2\n",
|
||||
" if x == 'D':\n",
|
||||
" y = 3\n",
|
||||
" if x == 'E':\n",
|
||||
" y = 4\n",
|
||||
" return y\n",
|
||||
"def add_to_dataset(x,y,z,l):\n",
|
||||
" y.at[z,'Label'] = l\n",
|
||||
" for i in range(0,1024):\n",
|
||||
" y.at[z,docnames[i+1]] = x[i]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "0d28e8d0-9386-4ccd-a7bf-f19e9d59d6f6",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docnames = [\"Pixel \" + str(i) for i in range(1024)]\n",
|
||||
"docnames.insert(0, 'Label')\n",
|
||||
"df1 = pd.DataFrame(columns = docnames) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "ce03500d-7d48-493f-a00c-94c1d79bf02d",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"i = 0\n",
|
||||
"for filename in os.listdir(image_folder):\n",
|
||||
" file_path = os.path.join(image_folder, filename)\n",
|
||||
"\n",
|
||||
" # Check if the file is a PNG file\n",
|
||||
" if filename.lower().endswith('.bmp'):\n",
|
||||
" # Extract the single letter from the filename (adjust the index accordingly)\n",
|
||||
" single_letter = filename[0]\n",
|
||||
"\n",
|
||||
" # Read the image and convert it to a NumPy array\n",
|
||||
" img_array = imageio.v2.imread(file_path)\n",
|
||||
"\n",
|
||||
" # Resize the image to 32x32\n",
|
||||
" resized_img_array = transform.resize(img_array, (32, 32))\n",
|
||||
"\n",
|
||||
" # Convert the RGB image to grayscale\n",
|
||||
" gray_img_array = color.rgb2gray(resized_img_array)\n",
|
||||
"\n",
|
||||
" # Flatten the image to 1024\n",
|
||||
" flattened_img_array = gray_img_array.flatten()\n",
|
||||
" \n",
|
||||
" label = convert_letter(single_letter)\n",
|
||||
" add_to_dataset(flattened_img_array,df1,i,label)\n",
|
||||
" i = i + 1\n",
|
||||
"\n",
|
||||
" # Append the processed image data to the list\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "02056706-60c3-4390-990a-9f84bb56c049",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df1.to_csv('cro_data_test.csv', index = False) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "66da76d9-6286-4e1e-b91e-007f43642c14",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.17"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
382
NoNeed/Germna_Data_Loader.ipynb
Normal file
382
NoNeed/Germna_Data_Loader.ipynb
Normal file
|
|
@ -0,0 +1,382 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "e9cfe5db-43cb-4298-9388-d869d7314ea2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np \n",
|
||||
"import pandas as pd "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "9a476b58-bb18-4499-96cd-4bf38ca7566f",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def img_flat(x):\n",
|
||||
" gray_img = np.mean(x, axis=0)\n",
|
||||
" flat_img = gray_img.flatten()\n",
|
||||
" return flat_img\n",
|
||||
"def add_to_dataset(x,y,z,l):\n",
|
||||
" y.at[z,'Label'] = l\n",
|
||||
" for i in range(0,1024):\n",
|
||||
" y.at[z,docnames[i+1]] = x[i]\n",
|
||||
" #print(z , \"Completed\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "6130f3c5-97bd-4be8-8751-9ffbae99436b",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docnames = [\"Pixel \" + str(i) for i in range(1024)]\n",
|
||||
"docnames.insert(0, 'Label')\n",
|
||||
"df1 = pd.DataFrame(columns = docnames) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "0d080bf5-067b-47a5-99dc-b22f145115b6",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Downloading https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/GTSRB_Final_Test_Images.zip to data/gtsrb/GTSRB_Final_Test_Images.zip\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"100%|██████████| 88978620/88978620 [00:10<00:00, 8777572.15it/s] \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Extracting data/gtsrb/GTSRB_Final_Test_Images.zip to data/gtsrb\n",
|
||||
"Downloading https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/GTSRB_Final_Test_GT.zip to data/gtsrb/GTSRB_Final_Test_GT.zip\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"100%|██████████| 99620/99620 [00:00<00:00, 289763.24it/s]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Extracting data/gtsrb/GTSRB_Final_Test_GT.zip to data/gtsrb\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"from torchvision.datasets import GTSRB\n",
|
||||
"from torchvision import transforms\n",
|
||||
"\n",
|
||||
"# Define a transform to convert the data to a NumPy array\n",
|
||||
"transform = transforms.Compose([\n",
|
||||
" transforms.Resize((32, 32)), \n",
|
||||
" transforms.ToTensor(),\n",
|
||||
"])\n",
|
||||
"\n",
|
||||
"# Download the dataset\n",
|
||||
"dataset = GTSRB(root='./data', split=\"test\", transform=transform, download=True)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Iterate through the dataset and apply transformations\n",
|
||||
"for i in range(len(dataset)):\n",
|
||||
" image, label = dataset[i]\n",
|
||||
" label = int(label)\n",
|
||||
" # Convert the PyTorch tensor to a NumPy array\n",
|
||||
" image_np = np.array(image)\n",
|
||||
" temp_img = img_flat(image_np)\n",
|
||||
" add_to_dataset(temp_img,df1,i,label)\n",
|
||||
" #data['label'].append(label)\n",
|
||||
" \n",
|
||||
" \n",
|
||||
"# Convert the data to a DataFrame\n",
|
||||
"#df = pd.DataFrame(data)\n",
|
||||
"\n",
|
||||
"# Save the DataFrame to a CSV file\n",
|
||||
"#df.to_csv('gtsrb_data.csv', index=False)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "1b64da5c-1326-4258-8066-6ab5debfec9d",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Label</th>\n",
|
||||
" <th>Pixel 0</th>\n",
|
||||
" <th>Pixel 1</th>\n",
|
||||
" <th>Pixel 2</th>\n",
|
||||
" <th>Pixel 3</th>\n",
|
||||
" <th>Pixel 4</th>\n",
|
||||
" <th>Pixel 5</th>\n",
|
||||
" <th>Pixel 6</th>\n",
|
||||
" <th>Pixel 7</th>\n",
|
||||
" <th>Pixel 8</th>\n",
|
||||
" <th>...</th>\n",
|
||||
" <th>Pixel 1014</th>\n",
|
||||
" <th>Pixel 1015</th>\n",
|
||||
" <th>Pixel 1016</th>\n",
|
||||
" <th>Pixel 1017</th>\n",
|
||||
" <th>Pixel 1018</th>\n",
|
||||
" <th>Pixel 1019</th>\n",
|
||||
" <th>Pixel 1020</th>\n",
|
||||
" <th>Pixel 1021</th>\n",
|
||||
" <th>Pixel 1022</th>\n",
|
||||
" <th>Pixel 1023</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>16</td>\n",
|
||||
" <td>0.563399</td>\n",
|
||||
" <td>0.556863</td>\n",
|
||||
" <td>0.559477</td>\n",
|
||||
" <td>0.560784</td>\n",
|
||||
" <td>0.555556</td>\n",
|
||||
" <td>0.550327</td>\n",
|
||||
" <td>0.54902</td>\n",
|
||||
" <td>0.546405</td>\n",
|
||||
" <td>0.537255</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>0.551634</td>\n",
|
||||
" <td>0.54902</td>\n",
|
||||
" <td>0.545098</td>\n",
|
||||
" <td>0.550327</td>\n",
|
||||
" <td>0.554248</td>\n",
|
||||
" <td>0.54902</td>\n",
|
||||
" <td>0.539869</td>\n",
|
||||
" <td>0.547712</td>\n",
|
||||
" <td>0.551634</td>\n",
|
||||
" <td>0.554248</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0.256209</td>\n",
|
||||
" <td>0.303268</td>\n",
|
||||
" <td>0.311111</td>\n",
|
||||
" <td>0.329412</td>\n",
|
||||
" <td>0.294118</td>\n",
|
||||
" <td>0.304575</td>\n",
|
||||
" <td>0.308497</td>\n",
|
||||
" <td>0.222222</td>\n",
|
||||
" <td>0.160784</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>0.865359</td>\n",
|
||||
" <td>0.810458</td>\n",
|
||||
" <td>0.524183</td>\n",
|
||||
" <td>0.265359</td>\n",
|
||||
" <td>0.201307</td>\n",
|
||||
" <td>0.213072</td>\n",
|
||||
" <td>0.228758</td>\n",
|
||||
" <td>0.240523</td>\n",
|
||||
" <td>0.27451</td>\n",
|
||||
" <td>0.281046</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>38</td>\n",
|
||||
" <td>0.171242</td>\n",
|
||||
" <td>0.166013</td>\n",
|
||||
" <td>0.164706</td>\n",
|
||||
" <td>0.166013</td>\n",
|
||||
" <td>0.164706</td>\n",
|
||||
" <td>0.15817</td>\n",
|
||||
" <td>0.162092</td>\n",
|
||||
" <td>0.163399</td>\n",
|
||||
" <td>0.160784</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>0.150327</td>\n",
|
||||
" <td>0.115033</td>\n",
|
||||
" <td>0.135948</td>\n",
|
||||
" <td>0.118954</td>\n",
|
||||
" <td>0.115033</td>\n",
|
||||
" <td>0.134641</td>\n",
|
||||
" <td>0.142484</td>\n",
|
||||
" <td>0.155556</td>\n",
|
||||
" <td>0.169935</td>\n",
|
||||
" <td>0.179085</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>33</td>\n",
|
||||
" <td>0.449673</td>\n",
|
||||
" <td>0.329412</td>\n",
|
||||
" <td>0.247059</td>\n",
|
||||
" <td>0.266667</td>\n",
|
||||
" <td>0.383007</td>\n",
|
||||
" <td>0.532026</td>\n",
|
||||
" <td>0.64183</td>\n",
|
||||
" <td>0.661438</td>\n",
|
||||
" <td>0.718954</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>0.477124</td>\n",
|
||||
" <td>0.562092</td>\n",
|
||||
" <td>0.654902</td>\n",
|
||||
" <td>0.776471</td>\n",
|
||||
" <td>0.738562</td>\n",
|
||||
" <td>0.696732</td>\n",
|
||||
" <td>0.756863</td>\n",
|
||||
" <td>0.877124</td>\n",
|
||||
" <td>0.946405</td>\n",
|
||||
" <td>0.882353</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>11</td>\n",
|
||||
" <td>0.132026</td>\n",
|
||||
" <td>0.145098</td>\n",
|
||||
" <td>0.15817</td>\n",
|
||||
" <td>0.155556</td>\n",
|
||||
" <td>0.150327</td>\n",
|
||||
" <td>0.145098</td>\n",
|
||||
" <td>0.15817</td>\n",
|
||||
" <td>0.184314</td>\n",
|
||||
" <td>0.203922</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>0.147712</td>\n",
|
||||
" <td>0.141176</td>\n",
|
||||
" <td>0.138562</td>\n",
|
||||
" <td>0.145098</td>\n",
|
||||
" <td>0.151634</td>\n",
|
||||
" <td>0.156863</td>\n",
|
||||
" <td>0.155556</td>\n",
|
||||
" <td>0.162092</td>\n",
|
||||
" <td>0.171242</td>\n",
|
||||
" <td>0.177778</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>5 rows × 1025 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Label Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 \\\n",
|
||||
"0 16 0.563399 0.556863 0.559477 0.560784 0.555556 0.550327 0.54902 \n",
|
||||
"1 1 0.256209 0.303268 0.311111 0.329412 0.294118 0.304575 0.308497 \n",
|
||||
"2 38 0.171242 0.166013 0.164706 0.166013 0.164706 0.15817 0.162092 \n",
|
||||
"3 33 0.449673 0.329412 0.247059 0.266667 0.383007 0.532026 0.64183 \n",
|
||||
"4 11 0.132026 0.145098 0.15817 0.155556 0.150327 0.145098 0.15817 \n",
|
||||
"\n",
|
||||
" Pixel 7 Pixel 8 ... Pixel 1014 Pixel 1015 Pixel 1016 Pixel 1017 \\\n",
|
||||
"0 0.546405 0.537255 ... 0.551634 0.54902 0.545098 0.550327 \n",
|
||||
"1 0.222222 0.160784 ... 0.865359 0.810458 0.524183 0.265359 \n",
|
||||
"2 0.163399 0.160784 ... 0.150327 0.115033 0.135948 0.118954 \n",
|
||||
"3 0.661438 0.718954 ... 0.477124 0.562092 0.654902 0.776471 \n",
|
||||
"4 0.184314 0.203922 ... 0.147712 0.141176 0.138562 0.145098 \n",
|
||||
"\n",
|
||||
" Pixel 1018 Pixel 1019 Pixel 1020 Pixel 1021 Pixel 1022 Pixel 1023 \n",
|
||||
"0 0.554248 0.54902 0.539869 0.547712 0.551634 0.554248 \n",
|
||||
"1 0.201307 0.213072 0.228758 0.240523 0.27451 0.281046 \n",
|
||||
"2 0.115033 0.134641 0.142484 0.155556 0.169935 0.179085 \n",
|
||||
"3 0.738562 0.696732 0.756863 0.877124 0.946405 0.882353 \n",
|
||||
"4 0.151634 0.156863 0.155556 0.162092 0.171242 0.177778 \n",
|
||||
"\n",
|
||||
"[5 rows x 1025 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df1.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "deaf22c0-5aae-45e4-a4db-196fbcc001a1",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df1.to_csv('gtsrb_data_test.csv', index = False) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bbc65ef5-4313-42ed-8690-557ebca488b8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.17"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue