Compare commits

...

2 commits

Author SHA1 Message Date
0fb1f69b1f Add debugging print statements 2024-09-27 11:02:06 -04:00
708a8e7222 Rewrite code with pytorch code 2024-09-27 11:01:14 -04:00
2 changed files with 269 additions and 108 deletions

View file

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
@ -37,7 +37,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
@ -61,6 +61,25 @@
"X_train, X_val = X_train.T, X_val.T"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Data shapes:\")\n",
"print(f\"X_train shape: {X_train.shape}\")\n",
"print(f\"Y_train shape: {Y_train.shape}\")\n",
"print(f\"X_test shape: {X_test.shape}\")\n",
"print(f\"Y_test shape: {Y_test.shape}\")\n",
"\n",
"print(\"\\nData statistics:\")\n",
"print(f\"X_train mean: {xp.mean(X_train)}, std: {xp.std(X_train)}\")\n",
"print(f\"X_test mean: {xp.mean(X_test)}, std: {xp.std(X_test)}\")\n",
"print(f\"Unique Y_train values: {xp.unique(Y_train)}\")\n",
"print(f\"Unique Y_test values: {xp.unique(Y_test)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
@ -77,7 +96,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
@ -88,7 +107,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
@ -105,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
@ -113,8 +132,8 @@
" return xp.maximum(Z, 0)\n",
"\n",
"def softmax(Z):\n",
" A = xp.exp(Z) / sum(xp.exp(Z))\n",
" return A\n",
" exp_Z = xp.exp(Z - xp.max(Z, axis=0, keepdims=True))\n",
" return exp_Z / xp.sum(exp_Z, axis=0, keepdims=True)\n",
"\n",
"def forward_prop(X, params):\n",
" caches = []\n",
@ -190,7 +209,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
@ -213,6 +232,10 @@
" val_accuracy = get_accuracy(val_predictions, Y_val)\n",
" \n",
" print(f\"Iteration {i}: Train Accuracy: {train_accuracy:.4f}, Validation Accuracy: {val_accuracy:.4f}\")\n",
" print(f\"Sample predictions: {train_predictions[:10]}\")\n",
" print(f\"Sample true labels: {Y_train[:10]}\")\n",
" \n",
" print(f\"Iteration {i}: Train Accuracy: {train_accuracy:.4f}, Validation Accuracy: {val_accuracy:.4f}\")\n",
" acc_store.append((train_accuracy, val_accuracy))\n",
" \n",
" if val_accuracy > best_val_accuracy:\n",
@ -229,7 +252,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
@ -248,7 +271,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
@ -284,15 +307,24 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"hidden_layers = [1, 2, 3, 4]\n",
"neurons_per_layer = [64, 128, 256]\n",
"hidden_layers = [1, 2]\n",
"neurons_per_layer = [64, 128, 256, 512]\n",
"layer_configs = list(product(*[neurons_per_layer] * max(hidden_layers)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(layer_configs)"
]
},
{
"cell_type": "code",
"execution_count": null,
@ -315,6 +347,17 @@
"print(f\"Best validation accuracy: {best_accuracy:.4f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"\\nModel Architecture:\")\n",
"for i in range(1, len(best_params)//2 + 1):\n",
" print(f\"Layer {i}: {best_params[f'W{i}'].shape}\")"
]
},
{
"cell_type": "code",
"execution_count": null,

View file

@ -2,15 +2,21 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import net.modules\n",
"import torch\n",
"\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from net.transcoder import Transcoder"
"from torch.utils.data import DataLoader, TensorDataset\n",
"from sklearn.model_selection import train_test_split\n",
"from tqdm import tqdm"
]
},
{
@ -19,138 +25,250 @@
"metadata": {},
"outputs": [],
"source": [
"filepath = 'data/bel_data_test.csv'\n",
"train_loader, test_loader, input_size = load_and_prepare_data(file_path=filepath)\n",
"\n",
"print(\"X_train shape:\", input_size.shape)"
"# Check if CUDA is available\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"print(f\"Using device: {device}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# input_size = X_train.shape[0]\n",
"# hidden_size = 128\n",
"# output_size = 61\n",
"data = pd.read_csv('data/bel_data_test.csv')\n",
"# Load the data\n",
"data = np.array(data)\n",
"\n",
"architecture = [input_size, [128], 61]\n",
"activations = ['leaky_relu','softmax']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize transcoder"
"# Split features and labels\n",
"X = data[:, 1:] # All columns except the first one\n",
"y = data[:, 0].astype(int) # First column as labels\n",
"\n",
"# Split the data into training and testing sets\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# bl_transcoder = Transcoder(input_size, hidden_size, output_size, 'leaky_relu', 'softmax')\n",
"bl_transcoder = Transcoder(architecture, hidden_activation='relu', output_activation='softmax')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train Encoders and save weights\n"
"# Convert to PyTorch tensors\n",
"X_train_tensor = torch.FloatTensor(X_train)\n",
"y_train_tensor = torch.LongTensor(y_train)\n",
"X_test_tensor = torch.FloatTensor(X_test)\n",
"y_test_tensor = torch.LongTensor(y_test)\n",
"\n",
"# Create DataLoader objects\n",
"train_dataset = TensorDataset(X_train_tensor, y_train_tensor)\n",
"test_dataset = TensorDataset(X_test_tensor, y_test_tensor)\n",
"\n",
"train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)\n",
"test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# # Train the encoder if need\n",
"# Define the MLP\n",
"class MLP(nn.Module):\n",
" def __init__(self):\n",
" super(MLP, self).__init__()\n",
" self.input_layer = nn.Linear(1024, 512)\n",
" self.h1_layer = nn.Linear(512, 64)\n",
" self.h2_layer = nn.Linear(64, 62)\n",
" self.relu = nn.ReLU()\n",
"\n",
"bl_transcoder.train_model(train_loader, test_loader, learning_rate=0.001, epochs=1000)\n",
"# bl_transcoder.train_with_validation(X_train, Y_train, alpha=0.1, iterations=1000)\n",
"bl_transcoder.save_results('bt_1h128n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load weights"
" def forward(self, x):\n",
" x = self.relu(self.input_layer(x))\n",
" x = self.h1_layer(x)\n",
" x = self.h2_layer(x)\n",
" return x\n",
"\n",
"# Define the Decoder\n",
"class Decoder(nn.Module):\n",
" def __init__(self):\n",
" super(Decoder, self).__init__()\n",
" self.h2_h1 = nn.Linear(64, 512)\n",
" self.h1_input = nn.Linear(512, 1024)\n",
" self.relu = nn.ReLU()\n",
"\n",
" def forward(self, x):\n",
" x = self.relu(self.h2_h1(x))\n",
" x = self.h1_input(x)\n",
" return x\n",
"\n",
"class MLPWithDecoder(nn.Module):\n",
" def __init__(self):\n",
" super(MLPWithDecoder, self).__init__()\n",
" self.mlp = MLP()\n",
" self.decoder = Decoder()\n",
"\n",
" def forward(self, x):\n",
" # MLP forward pass\n",
" h1 = self.mlp.relu(self.mlp.input_layer(x))\n",
" h2 = self.mlp.relu(self.mlp.h1_layer(h1))\n",
" output = self.mlp.h2_layer(h2)\n",
" \n",
" # Reconstruction\n",
" reconstruction = self.decoder(h2)\n",
" \n",
" return output, reconstruction"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"bl_transcoder.load_weights('weights/bt_1h128n_leaky_relu_weights.pth')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analysis"
"# Function to reconstruct an image\n",
"def reconstruct_image(model, image):\n",
" model.eval()\n",
" with torch.no_grad():\n",
" _, reconstruction = model(image.unsqueeze(0))\n",
" return reconstruction.squeeze(0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Plot learning curves\n",
"bl_transcoder.plot_learning_curves()\n",
"\n",
"# Visualize encoded space\n",
"bl_transcoder.plot_encoded_space(X_test, Y_test)\n",
"\n",
"print(X_test.shape)\n",
"print(X_train.shape)\n",
"# Check reconstructions\n",
"bl_transcoder.plot_reconstructions(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Transcode images"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_images = 2\n",
"indices = np.random.choice(X_test.shape[1], num_images, replace=False)\n",
"\n",
"for idx in indices:\n",
" original_image = X_test[:, idx]\n",
"def show_image_comparison(original, reconstructed, label, prediction):\n",
" \"\"\"\n",
" Display the original and reconstructed images side by side.\n",
" \n",
" # Encode the image\n",
" encoded = bl_transcoder.encode_image(original_image.reshape(-1, 1))\n",
" :param original: Original image (1D tensor of 1024 elements)\n",
" :param reconstructed: Reconstructed image (1D tensor of 1024 elements)\n",
" :param label: True label of the image\n",
" :param prediction: Predicted label of the image\n",
" \"\"\"\n",
" # Convert to numpy arrays and move to CPU if they're on GPU\n",
" original = original.cpu().numpy()\n",
" reconstructed = reconstructed.cpu().numpy()\n",
" \n",
" # Decode the image\n",
" decoded = bl_transcoder.decode_image(encoded)\n",
" # Reshape the 1D arrays to 32x32 images\n",
" original_img = original.reshape(32, 32)\n",
" reconstructed_img = reconstructed.reshape(32, 32)\n",
" \n",
" # Create a figure with two subplots side by side\n",
" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))\n",
" \n",
" # Show original image\n",
" ax1.imshow(original_img, cmap='gray')\n",
" ax1.set_title(f'Original (Label: {label})')\n",
" ax1.axis('off')\n",
" \n",
" # Show reconstructed image\n",
" ax2.imshow(reconstructed_img, cmap='gray')\n",
" ax2.set_title(f'Reconstructed (Predicted: {prediction})')\n",
" ax2.axis('off')\n",
" \n",
" plt.tight_layout()\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Initialize the model, loss function, and optimizer\n",
"model = MLPWithDecoder()\n",
"criterion = nn.CrossEntropyLoss()\n",
"reconstruction_criterion = nn.MSELoss()\n",
"optimizer = optim.Adam(model.parameters())\n",
"\n",
" # Visualize original, encoded, and decoded images\n",
" visualize_transcoding(original_image, encoded, decoded, idx)\n",
"\n",
" print(f\"Image {idx}:\")\n",
" print(\"Original shape:\", original_image.shape)\n",
" print(\"Encoded shape:\", encoded.shape)\n",
" print(\"Decoded shape:\", decoded.shape)\n",
" print(\"Encoded vector:\", encoded.flatten()) # Print flattened encoded vector\n",
" print(\"\\n\")"
"model = model.to(device)\n",
"criterion = criterion.to(device)\n",
"reconstruction_criterion = reconstruction_criterion.to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_epochs = 250\n",
"for epoch in range(num_epochs):\n",
" model.train() # Set the model to training mode\n",
" running_loss = 0.0\n",
" \n",
" # Use tqdm for a progress bar\n",
" with tqdm(train_loader, unit=\"batch\") as tepoch:\n",
" for images, labels in tepoch:\n",
" tepoch.set_description(f\"Epoch {epoch+1}\")\n",
" \n",
" images, labels = images.to(device), labels.to(device)\n",
" \n",
" optimizer.zero_grad()\n",
" \n",
" outputs, reconstructions = model(images)\n",
" \n",
" classification_loss = criterion(outputs, labels)\n",
" reconstruction_loss = reconstruction_criterion(reconstructions, images)\n",
" total_loss = classification_loss + reconstruction_loss\n",
" \n",
" total_loss.backward()\n",
" optimizer.step()\n",
" \n",
" running_loss += total_loss.item()\n",
" \n",
" tepoch.set_postfix(loss=total_loss.item())\n",
" \n",
" epoch_loss = running_loss / len(train_loader)\n",
" \n",
" # print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.eval() # Set the model to evaluation mode\n",
"with torch.no_grad():\n",
" try:\n",
" # Get a batch of test data\n",
" images, labels = next(iter(test_loader))\n",
" \n",
" # Move data to the same device as the model\n",
" images = images.to(device)\n",
" labels = labels.to(device)\n",
" \n",
" # Forward pass through the model\n",
" outputs, reconstructions = model(images)\n",
" \n",
" # Get predicted labels\n",
" _, predicted = torch.max(outputs.data, 1)\n",
" \n",
" # Display the first few images in the batch\n",
" num_images_to_show = min(5, len(images))\n",
" for i in range(num_images_to_show):\n",
" show_image_comparison(\n",
" images[i], \n",
" reconstructions[i], \n",
" labels[i].item(), \n",
" predicted[i].item()\n",
" )\n",
" \n",
" # Calculate and print accuracy\n",
" correct = (predicted == labels).sum().item()\n",
" total = labels.size(0)\n",
" accuracy = 100 * correct / total\n",
" print(f'Test Accuracy: {accuracy:.2f}%')\n",
" \n",
" except Exception as e:\n",
" print(f\"An error occurred during evaluation: {str(e)}\")"
]
},
{