{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e2a5d1d7-6bb3-4e24-9067-880296de1fc9", "metadata": { "tags": [] }, "outputs": [], "source": [ "import os\n", "import imageio\n", "from skimage import color, transform\n", "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "b37f1351-0a00-4a4b-9067-ea55a662bc80", "metadata": { "tags": [] }, "outputs": [], "source": [ "main_folder = 'data/Bel_Training_Set/'" ] }, { "cell_type": "code", "execution_count": 3, "id": "76f41177-fd53-4bf6-9e75-ba1a98c414ff", "metadata": { "tags": [] }, "outputs": [], "source": [ "subfolders = [f for f in os.listdir(main_folder) if os.path.isdir(os.path.join(main_folder, f))]" ] }, { "cell_type": "code", "execution_count": 4, "id": "706d2a6d-8147-42a1-ba19-3cc7108fcfea", "metadata": { "tags": [] }, "outputs": [], "source": [ "image_data = []\n", "label_data = []" ] }, { "cell_type": "code", "execution_count": 5, "id": "86841170-b9bc-46cf-b482-f2d653060bc0", "metadata": { "tags": [] }, "outputs": [], "source": [ "docnames = [\"Pixel \" + str(i) for i in range(1024)]\n", "docnames.insert(0, 'Label')\n", "df1 = pd.DataFrame(columns = docnames) " ] }, { "cell_type": "code", "execution_count": 6, "id": "d9e5d953-1652-47d3-a832-d71d87c2b7ee", "metadata": { "tags": [] }, "outputs": [], "source": [ "def add_to_dataset(x,y,z,l):\n", " y.at[z,'Label'] = l\n", " for i in range(0,1024):\n", " y.at[z,docnames[i+1]] = x[i]" ] }, { "cell_type": "code", "execution_count": 7, "id": "82fe02ed-8471-493f-aded-58c54edb7ef6", "metadata": { "tags": [] }, "outputs": [], "source": [ "i = 0\n", "for subfolder in subfolders:\n", " subfolder_path = os.path.join(main_folder, subfolder)\n", " for filename in os.listdir(subfolder_path):\n", " \n", " file_path = os.path.join(subfolder_path, filename)\n", " if filename.lower().endswith('.ppm'):\n", " img_array = imageio.v2.imread(file_path)\n", " resized_img_array = transform.resize(img_array, (32, 32))\n", " gray_img_array = color.rgb2gray(resized_img_array)\n", " flattened_img_array = gray_img_array.flatten()\n", " add_to_dataset(flattened_img_array,df1,i,int(subfolder))\n", " i = i + 1\n", " #print(\"Image From\", int(subfolder), \"Image Name\", filename)" ] }, { "cell_type": "code", "execution_count": 8, "id": "7bdcd7d7-56f3-4b9f-924f-dd811dddf605", "metadata": { "tags": [] }, "outputs": [], "source": [ "df1.to_csv('bel_data_test.csv', index = False) " ] }, { "cell_type": "code", "execution_count": null, "id": "12d9c974-85ed-4d10-af2e-0984a367d4be", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.16" } }, "nbformat": 4, "nbformat_minor": 5 }