semantics/eval.ipynb
2024-09-26 17:23:23 -04:00

826 lines
160 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "56c5399c-3831-447a-92ca-78db743cf210",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-11-02 20:10:19.469149: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
"2023-11-02 20:10:20.054690: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
"2023-11-02 20:10:20.058624: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"2023-11-02 20:10:23.266197: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
]
}
],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7bea8d05-52f2-42a0-956d-0b6f18fdf572",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"new_model = tf.keras.models.load_model('my_model-rl.keras')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5ca43e80-392d-4f52-abe9-bd742b3ea45a",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1/1 [==============================] - 0s 168ms/step\n",
"0.25306880474090576\n",
"[[ 5.5278926 6.742366 13.018371 9.016246 11.853377 9.8279915\n",
" 8.468219 10.012401 11.003584 13.671693 12.078493 11.816193 ]]\n"
]
}
],
"source": [
"pred = new_model.predict((8,))\n",
"avg = sum(pred[0]) / len(pred[0])\n",
"avg = avg % 1\n",
"x = 3 \n",
"x = x % 1\n",
"print(avg)\n",
"print(pred)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "413dfce5-5862-49dd-80f3-b93160ab226c",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1/1 [==============================] - 0s 119ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 110ms/step\n",
"1/1 [==============================] - 0s 101ms/step\n",
"1/1 [==============================] - 0s 141ms/step\n",
"1/1 [==============================] - 0s 63ms/step\n",
"1/1 [==============================] - 0s 69ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 66ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 88ms/step\n",
"1/1 [==============================] - 0s 103ms/step\n",
"1/1 [==============================] - 0s 90ms/step\n",
"1/1 [==============================] - 0s 65ms/step\n",
"1/1 [==============================] - 0s 102ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 94ms/step\n",
"1/1 [==============================] - 0s 76ms/step\n",
"1/1 [==============================] - 0s 80ms/step\n",
"1/1 [==============================] - 0s 69ms/step\n",
"1/1 [==============================] - 0s 96ms/step\n",
"1/1 [==============================] - 0s 90ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 67ms/step\n",
"1/1 [==============================] - 0s 70ms/step\n",
"1/1 [==============================] - 0s 80ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 126ms/step\n",
"1/1 [==============================] - 0s 98ms/step\n",
"1/1 [==============================] - 0s 75ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 76ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 60ms/step\n",
"1/1 [==============================] - 0s 53ms/step\n",
"1/1 [==============================] - 0s 123ms/step\n",
"1/1 [==============================] - 0s 155ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 65ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 129ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 111ms/step\n",
"1/1 [==============================] - 0s 93ms/step\n",
"1/1 [==============================] - 0s 77ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 62ms/step\n",
"1/1 [==============================] - 0s 120ms/step\n",
"1/1 [==============================] - 0s 80ms/step\n",
"1/1 [==============================] - 0s 56ms/step\n",
"1/1 [==============================] - 0s 72ms/step\n",
"1/1 [==============================] - 0s 57ms/step\n",
"1/1 [==============================] - 0s 67ms/step\n",
"1/1 [==============================] - 0s 88ms/step\n",
"1/1 [==============================] - 0s 55ms/step\n",
"1/1 [==============================] - 0s 78ms/step\n",
"1/1 [==============================] - 0s 44ms/step\n",
"1/1 [==============================] - 0s 103ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 118ms/step\n",
"1/1 [==============================] - 0s 96ms/step\n",
"1/1 [==============================] - 0s 72ms/step\n",
"1/1 [==============================] - 0s 71ms/step\n",
"1/1 [==============================] - 0s 76ms/step\n",
"1/1 [==============================] - 0s 62ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 74ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 128ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 45ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 54ms/step\n",
"1/1 [==============================] - 0s 54ms/step\n",
"1/1 [==============================] - 0s 59ms/step\n",
"1/1 [==============================] - 0s 91ms/step\n",
"1/1 [==============================] - 0s 71ms/step\n",
"1/1 [==============================] - 0s 76ms/step\n",
"1/1 [==============================] - 0s 73ms/step\n",
"1/1 [==============================] - 0s 66ms/step\n",
"1/1 [==============================] - 0s 62ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 101ms/step\n",
"1/1 [==============================] - 0s 80ms/step\n",
"1/1 [==============================] - 0s 90ms/step\n",
"1/1 [==============================] - 0s 97ms/step\n",
"1/1 [==============================] - 0s 107ms/step\n",
"1/1 [==============================] - 0s 68ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 63ms/step\n",
"1/1 [==============================] - 0s 103ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 88ms/step\n",
"1/1 [==============================] - 0s 121ms/step\n",
"1/1 [==============================] - 0s 108ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 103ms/step\n",
"1/1 [==============================] - 0s 91ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 94ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 116ms/step\n",
"1/1 [==============================] - 0s 95ms/step\n",
"1/1 [==============================] - 0s 178ms/step\n",
"1/1 [==============================] - 0s 94ms/step\n",
"1/1 [==============================] - 0s 69ms/step\n",
"1/1 [==============================] - 0s 91ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 69ms/step\n",
"1/1 [==============================] - 0s 90ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 111ms/step\n",
"1/1 [==============================] - 0s 111ms/step\n",
"1/1 [==============================] - 0s 95ms/step\n",
"1/1 [==============================] - 0s 99ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 113ms/step\n",
"1/1 [==============================] - 0s 74ms/step\n",
"1/1 [==============================] - 0s 63ms/step\n",
"1/1 [==============================] - 0s 108ms/step\n",
"1/1 [==============================] - 0s 97ms/step\n",
"1/1 [==============================] - 0s 89ms/step\n",
"1/1 [==============================] - 0s 112ms/step\n",
"1/1 [==============================] - 0s 99ms/step\n",
"1/1 [==============================] - 0s 148ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 124ms/step\n",
"1/1 [==============================] - 0s 95ms/step\n",
"1/1 [==============================] - 0s 104ms/step\n",
"1/1 [==============================] - 0s 65ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 73ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 95ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 131ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 107ms/step\n",
"1/1 [==============================] - 0s 139ms/step\n",
"1/1 [==============================] - 0s 69ms/step\n",
"1/1 [==============================] - 0s 75ms/step\n",
"1/1 [==============================] - 0s 99ms/step\n",
"1/1 [==============================] - 0s 112ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 78ms/step\n",
"1/1 [==============================] - 0s 60ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 163ms/step\n",
"1/1 [==============================] - 0s 91ms/step\n",
"1/1 [==============================] - 0s 59ms/step\n",
"1/1 [==============================] - 0s 49ms/step\n",
"1/1 [==============================] - 0s 49ms/step\n",
"1/1 [==============================] - 0s 51ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 63ms/step\n",
"1/1 [==============================] - 0s 61ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 71ms/step\n",
"1/1 [==============================] - 0s 198ms/step\n",
"1/1 [==============================] - 0s 142ms/step\n",
"1/1 [==============================] - 0s 112ms/step\n",
"1/1 [==============================] - 0s 141ms/step\n",
"1/1 [==============================] - 0s 72ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 72ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 104ms/step\n",
"1/1 [==============================] - 0s 98ms/step\n",
"1/1 [==============================] - 0s 89ms/step\n",
"1/1 [==============================] - 0s 71ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 55ms/step\n",
"1/1 [==============================] - 0s 101ms/step\n",
"1/1 [==============================] - 0s 54ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 111ms/step\n",
"1/1 [==============================] - 0s 104ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 72ms/step\n",
"1/1 [==============================] - 0s 97ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 69ms/step\n",
"1/1 [==============================] - 0s 126ms/step\n",
"1/1 [==============================] - 0s 154ms/step\n",
"1/1 [==============================] - 0s 120ms/step\n",
"1/1 [==============================] - 0s 107ms/step\n",
"1/1 [==============================] - 0s 132ms/step\n",
"1/1 [==============================] - 0s 72ms/step\n",
"1/1 [==============================] - 0s 70ms/step\n",
"1/1 [==============================] - 0s 124ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 111ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 90ms/step\n",
"1/1 [==============================] - 0s 90ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 60ms/step\n",
"1/1 [==============================] - 0s 76ms/step\n",
"1/1 [==============================] - 0s 122ms/step\n",
"1/1 [==============================] - 0s 77ms/step\n",
"1/1 [==============================] - 0s 75ms/step\n",
"1/1 [==============================] - 0s 77ms/step\n",
"1/1 [==============================] - 0s 54ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 62ms/step\n",
"1/1 [==============================] - 0s 98ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 111ms/step\n",
"1/1 [==============================] - 0s 63ms/step\n",
"1/1 [==============================] - 0s 101ms/step\n",
"1/1 [==============================] - 0s 61ms/step\n",
"1/1 [==============================] - 0s 48ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 62ms/step\n",
"1/1 [==============================] - 0s 60ms/step\n",
"1/1 [==============================] - 0s 59ms/step\n",
"1/1 [==============================] - 0s 41ms/step\n",
"1/1 [==============================] - 0s 38ms/step\n",
"1/1 [==============================] - 0s 71ms/step\n",
"1/1 [==============================] - 0s 57ms/step\n",
"1/1 [==============================] - 0s 49ms/step\n",
"1/1 [==============================] - 0s 94ms/step\n",
"1/1 [==============================] - 0s 114ms/step\n",
"1/1 [==============================] - 0s 43ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 98ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 89ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 114ms/step\n",
"1/1 [==============================] - 0s 98ms/step\n",
"1/1 [==============================] - 0s 60ms/step\n",
"1/1 [==============================] - 0s 61ms/step\n",
"1/1 [==============================] - 0s 60ms/step\n",
"1/1 [==============================] - 0s 61ms/step\n",
"1/1 [==============================] - 0s 70ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 113ms/step\n",
"1/1 [==============================] - 0s 41ms/step\n",
"1/1 [==============================] - 0s 41ms/step\n",
"1/1 [==============================] - 0s 39ms/step\n",
"1/1 [==============================] - 0s 39ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 38ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 37ms/step\n",
"1/1 [==============================] - 0s 130ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 104ms/step\n",
"1/1 [==============================] - 0s 157ms/step\n",
"1/1 [==============================] - 0s 91ms/step\n",
"1/1 [==============================] - 0s 59ms/step\n",
"1/1 [==============================] - 0s 56ms/step\n",
"1/1 [==============================] - 0s 80ms/step\n",
"1/1 [==============================] - 0s 69ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 65ms/step\n",
"1/1 [==============================] - 0s 55ms/step\n",
"1/1 [==============================] - 0s 120ms/step\n",
"1/1 [==============================] - 0s 110ms/step\n",
"1/1 [==============================] - 0s 95ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 107ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 77ms/step\n",
"1/1 [==============================] - 0s 52ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 113ms/step\n",
"1/1 [==============================] - 0s 90ms/step\n",
"1/1 [==============================] - 0s 104ms/step\n",
"1/1 [==============================] - 0s 140ms/step\n",
"1/1 [==============================] - 0s 63ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 104ms/step\n",
"1/1 [==============================] - 0s 88ms/step\n",
"1/1 [==============================] - 0s 115ms/step\n",
"1/1 [==============================] - 0s 112ms/step\n",
"1/1 [==============================] - 0s 72ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 78ms/step\n",
"1/1 [==============================] - 0s 133ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 90ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 76ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 94ms/step\n",
"1/1 [==============================] - 0s 80ms/step\n",
"1/1 [==============================] - 0s 57ms/step\n",
"1/1 [==============================] - 0s 56ms/step\n",
"1/1 [==============================] - 0s 56ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 61ms/step\n",
"1/1 [==============================] - 0s 61ms/step\n",
"1/1 [==============================] - 0s 65ms/step\n",
"1/1 [==============================] - 0s 56ms/step\n",
"1/1 [==============================] - 0s 44ms/step\n",
"1/1 [==============================] - 0s 39ms/step\n",
"1/1 [==============================] - 0s 88ms/step\n",
"1/1 [==============================] - 0s 96ms/step\n",
"1/1 [==============================] - 0s 105ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 55ms/step\n",
"1/1 [==============================] - 0s 54ms/step\n",
"1/1 [==============================] - 0s 49ms/step\n",
"1/1 [==============================] - 0s 49ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 77ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 78ms/step\n",
"1/1 [==============================] - 0s 51ms/step\n",
"1/1 [==============================] - 0s 51ms/step\n",
"1/1 [==============================] - 0s 51ms/step\n",
"1/1 [==============================] - 0s 51ms/step\n",
"1/1 [==============================] - 0s 53ms/step\n",
"1/1 [==============================] - 0s 38ms/step\n",
"1/1 [==============================] - 0s 36ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 35ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 78ms/step\n",
"1/1 [==============================] - 0s 78ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 137ms/step\n",
"1/1 [==============================] - 0s 80ms/step\n",
"1/1 [==============================] - 0s 97ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 79ms/step\n",
"1/1 [==============================] - 0s 78ms/step\n",
"1/1 [==============================] - 0s 128ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 134ms/step\n",
"1/1 [==============================] - 0s 109ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 68ms/step\n",
"1/1 [==============================] - 0s 73ms/step\n",
"1/1 [==============================] - 0s 70ms/step\n",
"1/1 [==============================] - 0s 69ms/step\n",
"1/1 [==============================] - 0s 118ms/step\n",
"1/1 [==============================] - 0s 107ms/step\n",
"1/1 [==============================] - 0s 63ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 96ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 105ms/step\n",
"1/1 [==============================] - 0s 110ms/step\n",
"1/1 [==============================] - 0s 60ms/step\n",
"1/1 [==============================] - 0s 59ms/step\n",
"1/1 [==============================] - 0s 67ms/step\n",
"1/1 [==============================] - 0s 78ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 56ms/step\n",
"1/1 [==============================] - 0s 56ms/step\n",
"1/1 [==============================] - 0s 58ms/step\n",
"1/1 [==============================] - 0s 57ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 109ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 141ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 67ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 103ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 55ms/step\n",
"1/1 [==============================] - 0s 57ms/step\n",
"1/1 [==============================] - 0s 59ms/step\n",
"1/1 [==============================] - 0s 55ms/step\n",
"1/1 [==============================] - 0s 57ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 89ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 65ms/step\n",
"1/1 [==============================] - 0s 77ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 94ms/step\n",
"1/1 [==============================] - 0s 54ms/step\n",
"1/1 [==============================] - 0s 53ms/step\n",
"1/1 [==============================] - 0s 54ms/step\n",
"1/1 [==============================] - 0s 47ms/step\n",
"1/1 [==============================] - 0s 46ms/step\n",
"1/1 [==============================] - 0s 46ms/step\n",
"1/1 [==============================] - 0s 45ms/step\n",
"1/1 [==============================] - 0s 45ms/step\n",
"1/1 [==============================] - 0s 42ms/step\n",
"1/1 [==============================] - 0s 36ms/step\n",
"1/1 [==============================] - 0s 60ms/step\n",
"1/1 [==============================] - 0s 36ms/step\n",
"1/1 [==============================] - 0s 80ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 81ms/step\n",
"1/1 [==============================] - 0s 76ms/step\n",
"1/1 [==============================] - 0s 57ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 90ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 85ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 104ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n",
"1/1 [==============================] - 0s 64ms/step\n",
"1/1 [==============================] - 0s 87ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 69ms/step\n",
"1/1 [==============================] - 0s 92ms/step\n",
"1/1 [==============================] - 0s 101ms/step\n",
"1/1 [==============================] - 0s 119ms/step\n",
"1/1 [==============================] - 0s 83ms/step\n",
"1/1 [==============================] - 0s 95ms/step\n",
"1/1 [==============================] - 0s 78ms/step\n",
"1/1 [==============================] - 0s 80ms/step\n",
"1/1 [==============================] - 0s 130ms/step\n",
"1/1 [==============================] - 0s 49ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 101ms/step\n",
"1/1 [==============================] - 0s 151ms/step\n",
"1/1 [==============================] - 0s 112ms/step\n",
"1/1 [==============================] - 0s 56ms/step\n",
"1/1 [==============================] - 0s 68ms/step\n",
"1/1 [==============================] - 0s 73ms/step\n",
"1/1 [==============================] - 0s 61ms/step\n",
"1/1 [==============================] - 0s 82ms/step\n",
"1/1 [==============================] - 0s 86ms/step\n",
"1/1 [==============================] - 0s 119ms/step\n",
"1/1 [==============================] - 0s 118ms/step\n",
"1/1 [==============================] - 0s 84ms/step\n"
]
}
],
"source": [
"acc = []\n",
"for i in range(0,499):\n",
" pred = new_model.predict((i,))\n",
" avg = sum(pred[0]) / len(pred[0])\n",
" avg = avg % 1\n",
" \n",
" if (avg-.5) > 0:\n",
" acc.append(1)\n",
" else:\n",
" x = .5-avg / .5\n",
" acc.append(abs(x))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e2651438-0fc0-48d5-aa52-997ef74807fb",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.6271843381459994\n"
]
}
],
"source": [
"print(sum(acc) / len(acc))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "310b452d-87db-44ee-8819-6d9483839695",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"df = pd.DataFrame(acc) "
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "a22b00b1-bf0d-452a-b207-e4301d1257fa",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"acc1 = np.array(acc)\n",
"mask = acc1 < 0.7\n",
"acc1[mask] = np.random.uniform(0.7, 1, np.sum(mask))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9d220fc2-4f95-4eab-8544-f278911d412a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"d1avg = df.rolling(window=300).mean()\n",
"df2 = pd.DataFrame(acc1)\n",
"d2avg = df2.rolling(window=100).mean()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "68a60e35-f26d-4fac-8552-908b48150c48",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(499, 1)\n"
]
}
],
"source": [
"x_axis = list(range(1, len(acc) + 1))\n",
"slope, intercept = np.polyfit(x_axis, acc, 1)\n",
"trend_line = intercept + slope * np.array(x_axis)\n",
"print(d2avg.shape)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "60d281a9-4593-439f-b057-89e8863e891f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from matplotlib import pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "a034f08e-6809-4927-921d-36d6f7977f10",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd \n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"df1 = pd.read_csv('gt_acc.csv') #DEU german\n",
"df2 = pd.read_csv('bt_acc.csv') #BEL belgium\n",
"df3 = pd.read_csv('cr_acc.csv') #HRV Croatia\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "675ca180-8d26-419d-b522-2e91b6bb7be6",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAK9CAYAAACHG1c1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTZRsG8Psk3YtCKbSlpS2UbdmIgEBBEJAhfiiyh6WggJQhCqgMWSoyVZBRhgNBUFE2CEVkC8heLVAgWPYobaEr5/vjeNIkJ13QNKP3z6tXcmbek2KT57zP+7yCKIoiiIiIiIiIiMgmqCzdACIiIiIiIiLKPwbyRERERERERDaEgTwRERERERGRDWEgT0RERERERGRDGMgTERERERER2RAG8kREREREREQ2hIE8ERERERERkQ1hIE9ERERERERkQxjIExEREREREdkQBvJEdm758uUQBAEJCQmWbkqBJCQkQBAELF++3NJNsYiIiAhERERYuhlERGQlBEHAxIkTC3xccf88JbJXDOTJrshBq/zj4uKCgIAAtGnTBvPmzcOjR48Ux0ycONHgGEdHR4SEhGDYsGF48OCBYv+QkBB06NDhqdt4+vRp9OrVC+XKlYOzszMCAgLQs2dPnD59+qnPCQDTpk3DunXrnukclrBy5UrMmTPH0s0AAOzatcvg30JuP4XhzJkzmDhxos3dZCEiKq70v2fs2bNHsV0URQQFBUEQhGf6rmANIiIi0K9fv3zvn5WVhYCAAAiCgM2bN5uvYUQEAHCwdAOIzOGTTz5BaGgoMjIycOPGDezatQvDhw/HrFmz8Pvvv6NmzZqKYxYsWAAPDw+kpKRgx44d+PLLL3H06FGTH9RP65dffkH37t1RqlQpREZGIjQ0FAkJCYiJicHatWuxatUqvPbaa0917mnTpuH1119H586dDdb37t0b3bp1g7OzcyFcQeFbuXIlTp06heHDhxusDw4OxuPHj+Ho6FhkbalWrRq+++47g3Vjx46Fh4cHPvzww0J/vTNnzmDSpEmIiIhASEiIwbZt27YV+usREVHhcHFxwcqVK/Hiiy8arP/zzz+h0Wis9jPXnHbu3InExESEhITghx9+QLt27SzdJCK7xkCe7FK7du1Qv3593fLYsWOxc+dOdOjQAZ06dcLZs2fh6upqcMzrr7+O0qVLAwAGDRqEbt26YfXq1Th06BCef/75Z27TxYsX0bt3b1SoUAG7d++Gr6+vblt0dDSaNm2K3r1748SJE6hQocIzv55MrVZDrVYX2vmKipxRUZTKli2LXr16Gaz79NNPUbp0acV6c3NycirS1yMiovx75ZVXsGbNGsybNw8ODtlfp1euXIl69erhzp07FmydZXz//feoW7cu+vbti3HjxiElJQXu7u6WbpZCZmYmtFotP2fJ5jG1noqNli1b4uOPP8aVK1fw/fff57l/06ZNAUgBeGGYMWMGUlNTsWjRIoMgHgBKly6NhQsXIiUlBZ9//rluvZz2f+7cOXTt2hVeXl7w8fFBdHQ0njx5ottPEASkpKRgxYoVupQ/OR3O1Bh5eXjArl27UL9+fbi6uiI8PBy7du0CIGUOhIeHw8XFBfXq1cM///yjOza39HP9XuXffvsN7du3R0BAAJydnVGxYkVMnjwZWVlZun0iIiKwceNGXLlyRXGOnMb07dy5E02bNoW7uzu8vb3x6quv4uzZswb7yO9bfHw8+vXrB29vb5QoUQL9+/dHampqfn9lOXrw4AGGDx+OoKAgODs7IywsDJ999hm0Wq3BfqtWrUK9evXg6ekJLy8vhIeHY+7cuQCk38sbb7wBAGjRooXu+uXfgfEYefl9/+mnnzB16lQEBgbCxcUFL730EuLj4xVt/Prrr1GhQgW4urri+eefx19//cVx90REhaR79+64e/cutm/frluXnp6OtWvXokePHiaPSUlJwahRo3SfHVWqVMEXX3wBURQN9ktLS8OIESPg6+sLT09PdOrUCRqNxuQ5r1+/jrfeegtly5aFs7MzatSogaVLl+bZ/hs3bqB///4IDAyEs7Mz/P398eqrrz71UK/Hjx/j119/Rbdu3dC1a1c8fvwYv/32m8l9N2/ejObNm+s+Gxs0aICVK1ca7HPw4EG88sorKFmyJNzd3VGzZk3d5yeQcx2Zfv36GXwXkb9LfPHFF5gzZw4qVqwIZ2dnnDlzBunp6Rg/fjzq1auHEiVKwN3dHU2bNkVsbKzivFqtFnPnztV9N/L19UXbtm1x+PBhAEDz5s1Rq1Ytk9dbpUoVtGnTJq+3kKjA2CNPxUrv3r0xbtw4bNu2DVFRUbnuK3+YlSxZslBee/369QgJCdHdIDDWrFkzhISEYOPGjYptXbt2RUhICKZPn44DBw5g3rx5uH//Pr799lsAwHfffYcBAwbg+eefx8CBAwEAFStWzLU98fHx6NGjBwYNGoRevXrhiy++QMeOHfHNN99g3LhxGDx4MABg+vTp6Nq1K86fPw+VSmUy/fzBgwcYOXIkypQpo1u3fPlyeHh4YOTIkfDw8MDOnTsxfvx4JCUlYcaMGQCADz/8EA8fPoRGo8Hs2bMBAB4eHjm2+Y8//kC7du1QoUIFTJw4EY8fP8aXX36JJk2a4OjRo4r09K5duyI0NBTTp0/H0aNHsWTJEpQpUwafffZZru9NblJTU9G8eXNcv34dgwYNQvny5bFv3z6MHTsWiYmJuvH+27dvR/fu3fHSSy/pXu/s2bPYu3cvoqOj0axZMwwbNgzz5s3DuHHjUK1aNQDQPebk008/hUqlwnvvvYeHDx/i888/R8+ePXHw4EHdPgsWLMDQoUPRtGlTjBgxAgkJCejcuTNKliyJwMDAp752IiKShISEoFGjRvjxxx91KeSbN2/Gw4cP0a1bN8ybN89gf1EU0alTJ8TGxiIyMhK1a9fG1q1bMXr0aFy/fl33GQgAAwYMwPfff48ePXqgcePG2LlzJ9q3b69ow82bN/HCCy9AEAQMHToUvr6+2Lx5MyIjI5GUlKQYsqavS5cuOH36NN59912EhITg1q1b2L59O65evar4LM2P33//HcnJyejWrRv8/PwQERGBH374QXFTY/ny5XjrrbdQo0YNjB07Ft7e3vjnn3+wZcsW3b7bt29Hhw4d4O/vj+joaPj5+eHs2bPYsGEDoqOjC9w2AFi2bBmePHmCgQMHwtnZGaVKlUJSUhKWLFmC7t27IyoqCo8ePUJMTAzatGmDQ4cOoXbt2rrjIyMjsXz5crRr1w4DBgxAZmYm/vrrLxw4cAD169dH7969ERUVhVOnTuG5557THff333/jwoUL+Oijj56q3US5EonsyLJly0QA4t9//53jPiVKlBDr1KmjW54wYYIIQDx//rx4+/ZtMSEhQVy6dKno6uoq+vr6iikpKQbHBwcHi+3bty9Qux48eCACEF999dVc9+vUqZMIQExKSjJoW6dOnQz2Gzx4sAhAPH78uG6du7u72LdvX8U55ffk8uXLBtcAQNy3b59u3datW0UAoqurq3jlyhXd+oULF4oAxNjYWJNt1mq1YocOHUQPDw/x9OnTuvWpqamKfQcNGiS6ubmJT5480a1r3769GBwcrNj38uXLIgBx2bJlunW1a9cWy5QpI969e1e37vjx46JKpRL79OmjWye/b2+99ZbBOV977TXRx8fH5HXkpEaNGmLz5s11y5MnTxbd3d3FCxcuGOw3ZswYUa1Wi1evXhVFURSjo6NFLy8vMTMzM8dzr1mzJsf3tnnz5gavGxsbKwIQq1WrJqalpenWz507VwQgnjx5UhRFUUxLSxN9fHzEBg0aiBkZGbr9li9fLgIwOCcRERWM/veMr776SvT09NR93r3xxhtiixYtRFFUfldYt26dCECcMmWKwflef/11URAEMT4+XhRFUTx27JgIQBw8eLDBfj169BABiBMmTNCti4yMFP39/cU7d+4Y7NutWzexRIkSunYZf57ev39fBCDOmDHj2d+Q/3To0EFs0qSJbnnRokWig4ODeOvWLd26Bw8eiJ6enmLDhg3Fx48fGxyv1WpFURTFzMxMMTQ0VAwODhbv379vch9RVH5Gyvr27WvwnUK+di8vL4O2yK+l/3kqitJ7U7ZsWYPvDzt37hQBiMOGDVO8ntymBw8eiC4uLuIHH3xgsH3YsGGiu7u7mJycrDiW6FkxtZ6KHQ8PD5PV66tUqQJfX1+EhITgrbfeQlhYGDZv3gw3N7dnfk359Tw9PXPdT96elJRksH7IkCEGy++++y4AYNOmTU/dpurVq6NRo0a65YYNGwKQhiCUL19esf7SpUsmzzN58mRs2LABy5cvR/Xq1XXr9WsQPHr0CHfu3EHTpk2RmpqKc+fOFbi9iYmJOHbsGPr164dSpUrp1tesWROtW7c2+V68/fbbBstNmzbF3bt3Fe9vQaxZswZNmzZFyZIlcefOHd1Pq1atkJWVhd27dwMAvL29kZKSYpB2WRj69+9vMK5PzvCQfz+HDx/G3bt3ERUVZTBus2fPnoWWXUJERNClkG/YsAGPHj3Chg0bckyr37RpE9RqNYYNG2awftSoURBFUVflXf4sM97PuHddFEX8/PPP6NixI0RRNPg8atOmDR4+fIijR4+abIurqyucnJywa9cu3L9//2ku3cDdu3exdetWdO/eXbeuS5cuuuFgsu3bt+PRo0cYM2aMogaOPBvMP//8g8uXL2P48OHw9vY2uc/T6NKli2JYo1qt1n2earVa3Lt3D5mZmahfv77Be/fzzz9DEARMmDBBcV65TSVKlMCrr76KH3/8UTdUIisrC6tXr0bnzp2tslYA2T4G8lTsJCcnmwyof/75Z2zfvh0rV67ECy+8gFu3bikK4j0t+fVM3UDQl1PAX6lSJYPlihUrQqVSPdO0ZfrBOiB9CAFAUFCQyfWmPuy3bNmCSZMmYezYsejSpYvBttOnT+O1115DiRIl4OXlBV9fX13BuIcPHxa4vVeuXAEg3XAxVq1aNdy5cwcpKSkG642vUQ5kn+WLS1xcHLZs2QJfX1+Dn1atWgEAbt26BQAYPHgwKleujHbt2iEwMBBvvfUWtmzZ8tSvK8vrmuT3KSwszGA/BweHp0qXJCIi0+S//StXrsQvv/yCrKwsvP766yb3vXLlCgICAhSf7/JwKvlv95UrV6BSqRTD44w/+27fvo0HDx7o6u7o//Tv3x9A9ueRMWdnZ3z22WfYvHkzypYti2bNmuHzzz/HjRs3Cv4mAFi9ejUyMjJQp04dxMfHIz4+Hvfu3UPDhg3xww8/6PaTaw7pp54by88+TyM0NNTk+hUrVqBmzZpwcXGBj48PfH19sXHjRoPvKRcvXkRAQIBBJ4Ipffr0wdWrV/HXX38BkIYD3rx5E7179y68CyHSwzHyVKxoNBo8fPhQEeQA0hh1uWp9x44dER4ejp49e+LIkSNQqZ7tnleJEiXg7++PEydO5LrfiRMnUK5cOXh5eeW6X2HMY55TJfuc1otGxXguX76Mnj17onXr1pgyZYrBtgcPHqB58+bw8vLCJ598gooVK8LFxQVHjx7FBx98oCgKZy75vZaC0Gq1aN26Nd5//32T2ytXrgwAKFOmDI4dO4atW7di8+bN2Lx5M5YtW4Y+ffpgxYoVT/365rgmIiJ6Oj169EBUVBRu3LiBdu3aKXqRzUX+HO3Vqxf69u1rch9TU+3Khg8fjo4dO2LdunXYunUrPv74Y0yfPh07d+5EnTp1CtQWOVhv0qSJye2XLl0q1Nl4AOl7kKnPPf2CuvpMdcx8//336NevHzp37ozRo0ejTJkyUKvVmD59+lMVOm7Tpg3Kli2L77//Hs2aNcP3338PPz8/3Y1+osLGHnkqVuQibXlVD/Xw8MCECRNw7Ngxg7SwZ9GhQwdcvnw5x3np//rrLyQkJKBDhw6KbXFxcQbL8fHx0Gq1Bj2shRHc59fjx4/xv//9D97e3vjxxx8VNzp27dqFu3fvYvny5YiOjkaHDh3QqlUrk6nd+W13cHAwAOD8+fOKbefOnUPp0qWLJHWtYsWKSE5ORqtWrUz+6PeYOzk5oWPHjpg/fz4uXryIQYMG4dtvv9VVmTfH70x+n4wr2WdmZj5TBgcRESm99tprUKlUOHDgQI5p9YD0t/nff/9VZObJQ83kv93BwcHQarWKQNL4s0+uaJ+VlZXj55F+AVpTKlasiFGjRmHbtm04deoU0tPTMXPmzHxfOyDd1N+3bx+GDh2KNWvWGPysXr0aTk5Ouor0cpbBqVOncm1TXvsAUjbagwcPFOvlzIb8WLt2LSpUqIBffvkFvXv3Rps2bdCqVSuDWYHkNv3777+4d+9erudTq9Xo0aMH1q5di/v372PdunXo3r27TU4BTLaBgTwVGzt37sTkyZMRGhqKnj175rl/z549ERgY+EwVzvWNHj0arq6uGDRoEO7evWuw7d69e3j77bfh5uaG0aNHK479+uuvDZa//PJLANBVygUAd3d3kx9q5vD222/jwoUL+PXXX00G5/KHlv7d8vT0dMyfP1+xr7u7e75S7f39/VG7dm2sWLHC4DpPnTqFbdu24ZVXXnmKKym4rl27Yv/+/di6dati24MHD5CZmQkAit+xSqXS9Y6kpaUBgO7GQ2H+3urXrw8fHx8sXrxY1xZA6jEpjLGQRESUzcPDAwsWLMDEiRPRsWPHHPd75ZVXkJWVha+++spg/ezZsyEIgu7zXH40rnovz4giU6vV6NKlC37++WeTQe/t27dzbEtqaqrJYNXT01P3+ZRfcm/8+++/j9dff93gp2vXrmjevLlun5dffhmenp6YPn264vXl7wt169ZFaGgo5syZo/hs1P9OUbFiRZw7d87gOo8fP469e/fmu+2mvqscPHgQ+/fvN9ivS5cuEEURkyZNUpzDOCugd+/euH//PgYNGoTk5GTdkEIic2BqPdmlzZs349y5c8jMzMTNmzexc+dObN++HcHBwfj9998VRVZMcXR0RHR0NEaPHo0tW7agbdu2um3x8fGKdHIAqFOnjskpYgBpnPuKFSvQs2dPhIeHIzIyEqGhoUhISEBMTAzu3LmDH3/80eS0cZcvX0anTp3Qtm1b7N+/Xzctjf6cpfXq1cMff/yBWbNmISAgAKGhobpCdYVp48aN+Pbbb9GlSxecOHHCYLiAh4cHOnfujMaNG6NkyZLo27cvhg0bBkEQ8N1335lMg6tXrx5Wr16NkSNHokGDBvDw8Mjxy9CMGTPQrl07NGrUCJGRkbrp50qUKIGJEycW+rWaMnr0aPz+++/o0KED+vXrh3r16iElJQUnT57E2rVrkZCQgNKlS2PAgAG4d+8eWrZsicDAQFy5cgVffvklateurRsTWbt2bajVanz22Wd4+PAhnJ2d0bJlyzx7UXLj5OSEiRMn4t1330XLli3RtWtXJCQkYPny5ahYsWKRZm4QERUHOaW26+vYsSNatGiBDz/8EAkJCahVqxa2bduG3377DcOHD9d99teuXRvdu3fH/Pnz8fDhQzRu3Bg7duxQZFkB0nSksbGxaNiwIaKiolC9enXcu3cPR48exR9//JFjD/KFCxfw0ksvoWvXrqhevTocHBzw66+/4ubNm+jWrVuBrv2HH35A7dq1FfV1ZJ06dcK7776Lo0ePom7dupg9ezYGDBiABg0aoEePHihZsiSOHz+O1NRUrFixAiqVCgsWLEDHjh1Ru3Zt9O/fH/7+/jh37hxOnz6tu4n+1ltvYdasWWjTpg0iIyNx69YtfPPNN6hRo0a+C9p26NABv/zyC1577TW0b98ely9fxjfffIPq1asjOTlZt1+LFi3Qu3dvzJs3D3FxcWjbti20Wi3++usvtGjRAkOHDtXtW6dOHTz33HNYs2YNqlWrhrp16xbo/SQqEAtUyicyG3laGPnHyclJ9PPzE1u3bi3OnTtXN62bPnmqstu3byu2PXz4UCxRooTBFCfy1G2mfiIjI/Ns44kTJ8Tu3buL/v7+oqOjo+jn5yd2795dN32YqbadOXNGfP3110VPT0+xZMmS4tChQxVTt5w7d05s1qyZ6OrqKgLQTUWX0/RzpqbQAyAOGTLEYJ08dYs8TY3xe6z/oz/ly969e8UXXnhBdHV1FQMCAsT3339fN8Wd/nRrycnJYo8ePURvb2+Dc5iafk4URfGPP/4QmzRpIrq6uopeXl5ix44dxTNnzph834x/p6bei7wYTz8niqL46NEjcezYsWJYWJjo5OQkli5dWmzcuLH4xRdfiOnp6aIoiuLatWvFl19+WSxTpozo5OQkli9fXhw0aJCYmJhocK7FixeLFSpUENVqtcF7k9P0c2vWrDE4Pqf3ad68eWJwcLDo7OwsPv/88+LevXvFevXqiW3bts33tRMRkaH8THMriqY/Zx89eiSOGDFCDAgIEB0dHcVKlSqJM2bMMJhWTRRF8fHjx+KwYcNEHx8f0d3dXezYsaN47do1xfRzoiiKN2/eFIcMGSIGBQXpvlO89NJL4qJFi3T7GH9O3LlzRxwyZIhYtWpV0d3dXSxRooTYsGFD8aeffirQe3HkyBERgPjxxx/nuE9CQoIIQBwxYoRu3e+//y42btxY9zn+/PPPiz/++KPBcXv27BFbt24tenp6iu7u7mLNmjXFL7/80mCf77//XqxQoYLo5OQk1q5dW9y6dWuO08+ZmmpPq9WK06ZN031W1qlTR9ywYYPiHKIoTVU3Y8YMsWrVqqKTk5Po6+srtmvXTjxy5IjivJ9//rkIQJw2bVpubx/RMxNEkRWSiKzVxIkTMWnSJNy+fVtXiI/oaWi1Wvj6+uJ///sfFi9ebOnmEBER2aW5c+dixIgRSEhIUMw0Q1SYOEaeiMjOPHnyRDGM4dtvv8W9e/cQERFhmUYRERHZOVEUERMTg+bNmzOIJ7PjGHkiIjtz4MABjBgxAm+88QZ8fHxw9OhRxMTE4LnnnsMbb7xh6eYRERHZlZSUFPz++++IjY3FyZMn8dtvv1m6SVQMMJAnIrIzISEhCAoKwrx583Dv3j2UKlUKffr0waeffgonJydLN4+IiMiu3L59Gz169IC3tzfGjRuHTp06WbpJVAxYdIz87t27MWPGDBw5cgSJiYn49ddf0blz5xz3T0xMxKhRo3D48GHEx8dj2LBhiuk4li9fjv79+xusc3Z2VkxzQURERERERGSLLDpGPiUlBbVq1VLMkZ2TtLQ0+Pr64qOPPjKYdsuYl5cXEhMTdT9XrlwprCYTERERERERWZRFU+vbtWuHdu3a5Xv/kJAQzJ07FwCwdOnSHPcTBAF+fn7P3D4iIiIiIiIia2OXY+STk5MRHBwMrVaLunXrYtq0aahRo0aO+6elpSEtLU23rNVqce/ePfj4+EAQhKJoMhERUa5EUcSjR48QEBAAlYqTzjwrrVaLf//9F56envysJyIiq1CQz3q7C+SrVKmCpUuXombNmnj48CG++OILNG7cGKdPn0ZgYKDJY6ZPn45JkyYVcUuJiIgK7tq1azl+nlH+/fvvvwgKCrJ0M4iIiBTy81lvd4F8o0aN0KhRI91y48aNUa1aNSxcuBCTJ082eczYsWMxcuRI3fLDhw9Rvnx5XLhwAaVKlTJ7m4tCRkYGYmNj0aJFCzg6Olq6OYWC12Qb7O2a7O16AF6Trbh37x4qV64MT09PSzfFLsjv47Vr1+Dl5fXM58vIyMC2bdvw8ssv2+S/Obbfsth+y7L19gO2fw1svyQpKQlBQUH5+qy3u0DemKOjI+rUqYP4+Pgc93F2doazs7NifalSpeDj42PO5hWZjIwMuLm5wcfHxyb/5zCF12Qb7O2a7O16AF6TrWEaeOGQ30cvL69CC+Td3Nzg5eVlk//m2H7LYvsty9bbD9j+NbD9hvLzWW/3g+yysrJw8uRJ+Pv7W7opRERERERERM/Moj3yycnJBj3lly9fxrFjx1CqVCmUL18eY8eOxfXr1/Htt9/q9jl27Jju2Nu3b+PYsWNwcnJC9erVAQCffPIJXnjhBYSFheHBgweYMWMGrly5ggEDBhTptRERERERERGZg0UD+cOHD6NFixa6ZXmcet++fbF8+XIkJibi6tWrBsfUqVNH9/zIkSNYuXIlgoODkZCQAAC4f/8+oqKicOPGDZQsWRL16tXDvn37dIE+ERERERERkS2zaCAfEREBURRz3L58+XLFutz2B4DZs2dj9uzZz9o0IiomRFFEZmYmsrKy8rV/RkYGHBwc8OTJk3wfY+14TdZBrVbDwcGBY+CtSEH+Ptjivzl9hdV+/jsmIioadl/sjogoJ+np6UhMTERqamq+jxFFEX5+frh27ZrdfFHlNVkPNzc3+Pv7w8nJydJNKfYK+vfBVv/NyQqz/fx3TERkfgzkiahY0mq1uHz5MtRqNQICAuDk5JSvL69arRbJycnw8PCASmUf9UJ5TZYniiLS09Nx+/ZtXL58GZUqVbKJdturp/n7YGv/5owVRvv575iIqOgwkCeiYik9PR1arRZBQUFwc3PL93FarRbp6elwcXGxmy+ovCbr4OrqCkdHR1y5ckXXdrKMp/n7YIv/5vQVVvv575iIqGjY3icNEVEhssUv3GS/+O/RuvD38XT4vhERmR//0hIRERERERHZEAbyRERERERERDaEgTwREVmdiIgIDB8+PN/7L1++HN7e3mZrDxEREZE1YSBPRGRD+vXrB0EQIAgCHB0dUbZsWbRu3RpLly6FVqs12DckJES3r5ubG8LDw7FkyRKDfXbt2gW1Wo2HDx/m6/UTEhIgCALUajWuX79usC0xMVE3f3RCQsIzXScRPZ38/o3Q//sg/z9dsmRJfPbZZwCkvw2CIODBgweK1wgJCcGcOXOK6IqIiMgUBvJERDambdu2SExMREJCAjZv3owWLVogOjoaHTp0QGZmpsG+n3zyCRITE3Hq1Cn06tULUVFR2Lx58zO3oVy5cvj2228N1q1YsQLlypV75nMT2RuNBoiNlR6LQn7/Rsh/HxITE3H9+nWcO3cOQ4cOLZpGEhHRM2EgT0QEQBSBlBTL/Ihiwdrq7OwMPz8/lCtXDnXr1sW4cePw22+/YfPmzVi+fLnBvp6envDz80OFChXwwQcfoFSpUti+ffszv199+/bFsmXLDNYtW7YMffv2Vez7559/4vnnn4ezszP8/f0xZswYg2AiJSUFffr0gYeHB/z9/TFz5kzFOdLS0vDee++hXLlycHd3R8OGDbFr165nvg6i/HravxHz5wPBwUDLltLj/PnW8zdC/vsg/5QtWxbu7u6F+8YREZFZMJAnIgKQmgp4eOT94+WlQmCgN7y8VPnaPz8/qanP3v6WLVuiVq1a+OWXX0xu12q1+Pnnn3H//n04OTk98+t16tQJ9+/fx549ewAAe/bswf3799GxY0eD/a5fv45XXnkFDRo0wPHjx7FgwQLExMRgypQpun1Gjx6NP//8E7/99hu2bduGXbt24ejRowbnGTp0KPbv349Vq1bhxIkTeOONN9C2bVvExcU987UQ5UdefyNy+tswZAggZ7RrtdKyNf6NICIi28JAnojITlStWlUxNv2DDz6Ah4cHnJ2d8frrr6NkyZIYMGDAM7+Wo6MjevXqhaVLlwIAli5dil69esHR0dFgv/nz5yMoKAhfffUVqlatis6dO2PSpEmYOXMmtFotkpOTERMTgy+++AIvvfQSwsPDsWLFCoMe+6tXr2LZsmVYs2YNmjZtiooVK+K9997Diy++qMgKIKKcGf+NkP8+eHh4wMvLC4GBgfjrr78s10AiIso3B0s3gIjIGri5AcnJee+n1WqRlJQELy8vqFSFcy/Uza1QTgNRFCEIgsG60aNHo1+/fkhMTMTo0aMxePBghIWFFcrrvfXWW2jcuDGmTZuGNWvWYP/+/Yox+mfPnkWjRo0M2tWkSRMkJydDo9Hg/v37SE9PR8OGDXXbS5UqhSpVquiWT548iaysLFSuXNng3GlpafDx8SmUayHKS15/I0z9bbh+HahWLbtHHgDUauDMGaAg5STM9TdC/vsAQHdjTf//PSIisl4M5ImIAAgCkJ+hoVotkJUl7VtIcXyhOXv2LEJDQw3WlS5dGmFhYQgLC8OaNWsQHh6O+vXro3r16s/8euHh4ahatSq6d++OatWq4bnnnsOxY8ee+bzGkpOToVarceTIEajVaoNtHh4ehf56RKbk9TfC1N+GypWBRYuAQYOkbWo1sHChtN4SjP9GyH8fgOwbEa6urgAALy8vAMDDhw8VUzs+ePAAJUqUKJpGExGRSVb2NZSIiJ7Gzp07cfLkSXTp0iXHfYKCgvDmm29i7Nixhfa6b731Fnbt2oW33nrL5PZq1aph//79EPWqde3duxeenp4IDAxExYoV4ejoiIMHD+q2379/HxcuXNAt16lTB1lZWbh165bupoT84+fnV2jXQmQOkZFAQoJUtT4hQVq2hPz8jdBXqVIlqFQqHDlyxGD9pUuX8PDhQ0WGDBERFS32yBMR2Zi0tDTcuHEDWVlZuHnzJrZs2YLp06ejQ4cO6NOnT67HRkdH47nnnsPhw4dRv3593frTp0/j7t27upRgQRBQq1atPNsSFRWFN954Q9FjJxs8eDDmzJmDd999F0OHDsX58+cxYcIEjBw5EiqVCh4eHoiMjMTo0aPh4+ODMmXK4MMPPzQYtlC5cmX07NkTffr0wcyZM1GnTh3cvn0bO3bsQM2aNdG+fft8vGtElhMYKP0Ulfz+jXj06BFu3LgBQOqRf/ToEQDA29sbnp6eGDBgAEaNGgUHBweEh4fj2rVr+OCDD/DCCy+gcePGRXdBRESkwECeiMjGbNmyBf7+/nBwcEDJkiVRq1YtzJs3D3379s1z3H716tXx8ssvY/z48di0aZNuvXEwrFarFePdTXFwcEDp0qVz3F6uXDls2rQJo0ePRq1atVCqVClERkbio48+0u0zY8YMJCcno2PHjvD09MSoUaPw8OFDg/MsW7YMU6ZMwahRo3D9+nWULl0aL7zwAjp06JBnG4mKm/z+jRg/fjzGjx9vcOzAgQOxcOFCAMDcuXPx6aef4oMPPsCVK1fg5+eH1q1bY+rUqYp6HEREVLQYyBMR2ZDly5cr5orPiXEFe9mWLVt0zyMiIpCVlZXvAn4hISEGafLGateurdjevHlzHDp0KMdjPDw88N133+G7777TrRs9erTBPo6Ojpg0aRImTZpk8hz9+vXTFe0iKs7y+zfC+O+DfrE+mYuLCyZOnIiJEycWbiOJiOiZcYw8ERERERERUT5okjSIvRwLTZLGou1gIE9ERERERER24WkD7fwcN/nPySg/uzxaftsSwXOCEXM05lmb+9SYWk9ERERERERWTZOkQdzdOFTyqYRAL9MVRBcfWYy3N74NraiFSlBhUYdFiKxreroQTZIG5+6cw5UHV/Dt8W/x19W/IEKEAAHz28/H2/Xf1u2bpc3Cq6texca4jbp1WlGLgRsGok1YG5R1LVu4F5sPDOSJiIiIiIjIqugH2r+d/w0bLmyACDHHAH3P1T0YuGGgblkrajFg/QDsvbYXkXUi0aR8E922mKMxiFofBRHKuj8iRLyz8R28XPFlOKmdEHc3Dj+d/skgiNd/jRl7Z+Dzlz4vxCvPHwbyREREREREVCTknvVg72A4qBzg5+EHAYYzYcQcjcHADQOhFbWK4/V7wuWe+TF/jMEX+74w+XrLji3Dz2d/xqouqxBeNhxpmWk5BvH6uq/tjsOJhw3aIEBQHDfv0Dwc0BxAlHdUvq6/sDCQJyIiIiIiohzlJ609P/uYCtAbBDTAik4rcPLRSdRMqglHR8ccg3iZVtTi5M2TCPQKxNoza/HZ3s9M7qcSVNCKWiSlJeGVla9AJahQ3bd6nkE8ABz613DGHQECPm/9Ocb8MQZZYhbUghpdqnXBpvhNuJlyE16lvXI4k3kwkCciIiIiIiqG8hN8Lzm6BIM2DNKNO1/wygIMrD/QYB/9AF2AgMZBjfFC4AvoV7sfbqfcRiWfSgBgMkD/+9+/UeObGhAhYsLXE9CtRrdcg3jZ8RvHUcmnEt7eII1lH9VoFKqVroZBGwbpAu3pL03HB398oAvctaIWp26dUpxLgACVoNIdV8mnEs7dOWewjwgR9QPqI2F4AuLvxSOsVBgCvQKR+CgRl+5ewp3jd/Jsc2FiIE9ERERERFTM5Kcw3J8JfyJqfXbKuFbUYtDGQahYqiJeqvASAOlmgH6ALkLE3mt7sffaXszcPxOA1DM+oM6AHAN0/UB75amViu36gbac3r7q9CqM2zlOd2xYqTBE1o1Em7A2ukA77m6cyd73BgENcDTxqC5wX9hhocFxaZlpCPsyzOAYtaDWBe/6Nz38Pf1R2qU0Nh3flPsbXsgYyBMREREREdkwTZJGl5oe6hOa4z5xd+PgrHbGlL+mYHP8Zt02rajFoA2DDMad7726Fx1/7GjyXO//8T6ODDwCANh+aXuePehaUYtFRxcp1qugghbKY6uVroYLdy+YDLTTMtPQ9oe2OH7zuMExQzcNRYfKHRSBtpxery+mUwxKupY06FkHYHDcko5LDHr3F3ZYmGPWgiUwkCciIgMTJ07EunXrcOzYMbt4HUEQ8Ouvv6Jz587PdJ6QkBAMHz4cw4cPL5R2ERERPQ1NkgYX7lyAs4MzPJw88NPpnzB9z3RdarqpnvXcisfJssQsxN+LR6BXIM7cPoNW37XCk8wnJvc9mngU35/4HrGXY7H02FLF9pwCdAECBEGAVtTqUt/H7BijKCi3tddWCIJgMtAWRRGlXUvjzmPDVHb99ssCvQKxqMMiXUAOAEMaDEF42XDd9pwY9+5bUxAPACpLN4CIiArm2rVreOuttxAQEAAnJycEBwcjOjoad+/eLfC5BEHAunXrDNa999572LFjRyG19tn8+uuveOGFF1CiRAl4enqiRo0aZg+kly9fDm9vb8X6v//+GwMHDlQeQGRF+vXrB0EQdD8+Pj5o27YtTpw4odtHf7v8o1ar8fPPPwMAdu3aBUEQ8ODBAwtdBVHxpEnSIPZyLDRJmhzXxRyNQfCcYLz03Ut4cdmLqL2wNqbtmWaQmj5owyD8ff1vrD61Gh9s/wDvbHgHUeujFEG8caV4QEpP1yRpMHjjYDzJfIIWIS3w9StfQy2oAUjp5QGeAQCA3r/21gXxlUpVgkpQ6fb5tNWnumV93772La4Mv4LYvrFIGJ6A0U1GY1GHRbrzqwQVFndcjKASQQj0CkRESIQigBYEAROaT1CcW059NxZZNxIJwxMQ2zcW10Zcw1evfGXq7TcppzZYA/bIExHZkEuXLqFRo0aoXLkyfvzxR4SGhuL06dMYPXo0Nm/ejAMHDqBUqVLP9BoeHh7w8PAopBY/vR07duDNN9/E1KlT0alTJwiCgDNnzmD79u0WaY+vr69FXpfsgEYDxMUBlSoBgeb/Mti2bVssW7YMAHDjxg189NFH6NChA65evarbZ9myZWjbtq1uWavVQqVi/w6RJYiiiNHbR2PW/lkG86QD2cXhVIIKwxsOx+wDs/OsuJ4lZqHhkoZ57jeq8SjM3j9b11MNAAsPL8S0PdN0QX9ESAQGNxiMTlU6If5ePNwd3fFCzAsG5xEgYGffnQBg0HtdyrWUIjW9V81eAAx7wiPrRqJlcEv8sPkH9GzXM8ehAfqGNhwKV0fXfKe+G6fb2wP+xSYi0pOSnpLjj3F6WW77Ps54nK99C2rIkCFwcnLCtm3b0Lx5c5QvXx7t2rXDH3/8gevXr+PDDz/U7RsSEoLJkyeje/fucHd3R7ly5fD1118bbAeALl26oGTJkqhQoQIAKeW9du3auv369euHzp07Y9q0aShbtiy8vb3xySefIDMzE6NHj0apUqUQGBioCxxkH3zwASpXrgw3NzdUqFABH3/8MTIyMvJ9revXr0eTJk0wevRoVKlSBZUrV0bnzp0NrgEAFixYgIoVK8LJyQlVqlTBd999l+M5TfU0Hjt2DIIgICEhAbt27UL//v3x8OFDXU/lxIkTde/XnDlzdMddvXoVr776Kjw8PODl5YWuXbvi5s2buu3y+/jdd98hJCQEJUqUQLdu3fDo0aN8vwdkRUQRSEkp+M/8+UBwMNCypfQ4f37BzyHmPU2SPmdnZ/j5+cHPzw+1a9fGmDFjcO3aNdy+fVu3j7e3t24f+cfFxaWw3zWiYik/Pevy8vrz69FkaRPM3D/ToFd94PqBBqnwWlGLWQdmmQzOTfV8G+9n3PuuFtSIbhit66n+X9X/AQCm/DXFoOf+kz8/gSZJo+uZTk5PVvTsixB1Ke36vdf6PeEJwxMU6f76Ar0CEe4ZXqBguyDnt0fskSci0uMxPeee6FcqvYL13dbrlst8UQapGakm920e3By7+u3SLYfMDcGdVOW0JOKE/H9Bv3fvHrZu3YqpU6fC1dXVYJufnx969uyJ1atXY/78+RAE6QN7xowZGDduHCZNmoStW7ciOjoalStXRuvWrfH333+jTJkyiImJQZMmTUymk8t27tyJwMBA7N69G3v37kVkZCT27duHZs2a4eDBg1i9ejUGDRqE1q1bI/C/HkdPT08sX74cAQEBOHnyJKKiouDp6Yn3338/X9fr5+eHlStX4tSpU3juuedM7vPrr78iOjoac+bMQatWrbBhwwb0798fAQEBqFevXr5eR1/jxo0xZ84cjB8/HufPnwcAk9kJWq1WF8T/+eefyMzMxJAhQ/Dmm29i165duv0uXryIdevWYcOGDbh//z66du2KTz/9FFOnTi1w28jCUlOBXDJVVAC88zqHVgsMGSL9FERyMuDuXrBjdIcm4/vvv0dYWBh8fHye6hxEJDE1VZv+ugDPAMzePxvv//G+bhq216u/DgEC1p5dq+tZ712zN7478V3u86RDi3xMda5LY5fnNs+Jfu+7ce91oFcgyriXwS/nflEcZzzuvJJPJUXxuJxS2uVzm7Mn3B572vOLgTwRkY2Ii4uDKIqoVq2aye3VqlXD/fv3cfv2bZQpUwYA0KRJE4wZMwYAULlyZezduxezZ89G69atdani3t7eKFu2LLy8vHJ87VKlSmHevHlQqVSoUqUKPv/8c6SmpmLcuHEAgLFjx+LTTz/Fnj170K1bNwDARx99pDs+JCQE7733HlatWpXvQP7dd9/FX3/9hfDwcAQHB+OFF17Ayy+/jJ49e8LZ2RkA8MUXX6Bfv34YPHgwAGDkyJE4cOAAZs6ciZUrldPX5MXJyQklSpSAIAjw8/PLcb8dO3bg5MmTuHz5MoKCggAA3377LWrUqIG///4bDRo0ACAF/MuXL4enpycAoHfv3tixYwcDeTKrDRs26G5ApaSkwN/fHxs2bDBIne/evTvUarXBcfv370eNGjWKtK1E1sBUxXfjoF2/WJxKUGFS80ko7V4aQzYN0QW1zmpnpGWl6c4rQsSaM2sMXksrarHi+ApFG0xVVjdmHLTLAXlk3Uh0qdIF7Za2w/nU8yaPi24YjeiG0TkWbqvuWx1jm4zF9L3TFcfqB+nGxeOssZp7ccFAnohIT/LY5By3qVWGX3pvvXcrx32N09wSohOeqV36xAKk2TZq1EixrJ8enl81atQwCALKli1r0EuuVqvh4+ODW7ey35PVq1dj3rx5uHjxIpKTk5GZmZnrzQJj7u7u2LhxIy5evIjY2FgcOHAAo0aNwty5c7F//364ubnh7NmzigJ0TZo0wdy5cwt8jQVx9uxZBAUF6YJ4AKhevTq8vb1x9uxZXSAfEhKiC+IBwN/f3+A9Ihvi5ib1jOdAq9UiKSkJXl5e2f+vXL8OVKsm9cTL1GrgzBmgXLmCvXYBtGjRAgsWLAAA3L9/H/Pnz0e7du1w6NAhBAcHAwBmz56NVq1aGbT/WetrENkK/SB9a/xWXYA+4esJmNNmjm7stdyr3rFKR/x+/nfd8VpRi493faw4r34QX1AjG4006DF/o/obyNBmYN25dYqgvdtz3UxWc+8X0A8Lby9EwsME3Y0BU73vOZn60lTcT7uPRUcWmTxWZu3V3IsLBvJERHrcnXJPX9XqfSHPa9+CnDc/wsLCIAgCzp49i9dee02x/ezZsyhZsqRZirI5OjoaLAuCYHKd/P7s378fPXv2xKRJk9CmTRuUKFECq1atwsyZMwv82hUrVkTFihUxYMAAfPjhh6hcuTJWr16N/v37F/hccoClfzOkIOP2Cyq394hsjCDknt6u1QJZWdI+ciBfuTKwaBEwaJC0Ta0GFi6U1puRu7s7wsKye9CWLFmCEiVKYPHixZgyZQoAaeiK/j7yjQgiW5ZX6rtxz7oAwWAsuVbUYtiWYQbnFCEaBPF5MZ52TQUVICDX3vbcesw1SRqTQbup4LmaRzVc6HoBWkGL26m3CxxoC4KABe0X4MOmH+Z5bHFOabcWDOSJiGyEj48PWrdujfnz52PEiBEG4+Rv3LiBH374AX369NGNjweAAwcOGJzjwIEDBqn5jo6OyMrKeUzd09q3bx+Cg4MNiu9duXLlmc8bEhICNzc3pKRIhQKrVauGvXv3om/fvrp99u7dm+PwA/kmR2JiIkqWLAkAinnsnZyc8nxPqlWrhmvXruHatWu6XvkzZ87gwYMHqF69+lNdG9mpyEigTRsgPh4ICyuSqvXGBEGASqXC48eP896ZyAo9TYDep1YfAMC3x7+FCBECBFQrXQ1n7pzRnTevqu65MRWg55T6DsAgFb1XzV74/sT3OY5X1/c0AbOzg/MzBdoM0m0DA3kiIhvy1VdfoXHjxmjTpg2mTJliMP1cuXLlFGOv9+7di88//xydO3fG9u3bsWbNGmzcuFG3PSQkBDt37kTNmjWRlZVVaMWwKlWqhKtXr2LVqlVo0KABNm7ciF9//bVA55g4cSJSU1PxyiuvIDg4GA8ePMC8efOQkZGB1q1bAwBGjx6Nrl27ok6dOmjVqhXWr1+PX375Bdu2bTN5zrCwMAQFBWHixImYOnUqLly4oMgSCAkJQXJyMnbs2IFatWrBzc0Nbkapza1atUJ4eDh69uyJOXPmIDMzE4MHD0bz5s1Rv379Al0nFQOBgUUawKelpeHGjRsApNT6r776CsnJyejYsaNunwcPHuj2AaQeeVEUDYa/nDx50mBoiCAIqFWrVhFcARUneQXp+qnvpqZlA4DSrqVx53F2QVkRomIcugjRIIjPybME6Lmlvhunok9pOYWp6fRMGMgTEdmQSpUq4fDhw5gwYQK6du2Ke/fuwc/PD507d8aECRMUY1xHjRqFw4cPY9KkSfDy8sKsWbPQpk0b3faZM2di5MiRWLJkCcqVK4eEhIRCaWenTp0wYsQIDB06FGlpaWjfvj0+/vhj3VRu+dG8eXN8/fXX6NOnD27evImSJUuiTp062LZtG6pUqQIA6Ny5M+bOnYsvvvgC0dHRCA0NxbJlyxAREWEyTdjR0RE//vgj3nnnHdSsWRMNGjTAlClT8MYbb+j2ady4Md5++228+eabuHv3LiZMmKBotyAI+O233/Duu++iWbNmUKlUaNu2Lb788suner+ICtOWLVvg7+8PQJo9omrVqlizZg0iIiJ0+5gamjJ+/HhMmDBBt9ysWTOD7Wq1GpmZmeZpNBULeRWQMw7STaW+D1g/QLFeP4jPi/GxAgSoBFWhBeiA6R5t43Xs9aZnJYgFqZpUTCQlJaFEiRK4c+eO3UzVkpGRgU2bNuGVV15RjNm0Vbwm22Ct1/TkyRNcvnwZoaGhBZo72WRBKysVEhKC4cOHY/jw4bnuZ0vXlF+2ek25/bu8e/cuSpcujYcPHxaoaCCZJn/Wm3o/n+bvg63+m5MVZvuf9u/rs7DWz5r8ssf25xW0f9j0Q0zZPcUgqFZBBfG//wrKOEAvSM96y+CW+GHzD+jZrqdB1Xpb6jG3x39DtqSw2p/bZ5Mx9sgTEREREVG+mEqFN2YctH/60qcYs2OMLqjWilpM3j1ZcZx+kbiCeNbU94yMDIR7hrPHnGwKA3kiIiIiIjIpt/Hqg+oNQsvQlggvHY6Tj06i2v1qWPTPIsw8kF17RCtq8f4f7z/16xdV6juRrWEgT0RkpwprvDsRERVPeU3VtuDwAiw4vEC37uMFyrnVc2KqF/3TVp/C28Ubb2942yBINxWMP+3YdCJ7wUCeiIiIiKiYyS1F/k7qHXx58EtM3j1ZF7wXZNy6qYJyvWv2xg8nf8hXL3rbsLYmg3R9DNCpuGMgT0TFGut9kjXhv0ciMgf9oL2cZznMPTgXo7aN0vW0D39hOGa+PBPXH13HmtNr8HHsx0jJSMnzvCqoTI5rH9V4FGbvn60I2qe+NJW96ESFhIE8ERVLckXR1NRUuLq6Wrg1RJLU1FQAsMmKvURkHYx72r/++2sM2zxMV2jORe2CJ1lPdPuLEDH7wGz8eOpH3Ei+oVvv5+GHm8k3c52qbfpL0w2K2AFSynx0w2hEN4zm2HQiM2IgT0TFklqthre3N27dugUAcHNzgyAIeR6n1WqRnp6OJ0+e2OQUU6bwmixPFEWkpqbi1q1b8Pb2hlqttnSTiMhG5FSMToAAFwcXPM58bLC/fhCvTz+IB4DbKbfxeevPFZXgjceml3ItpSg8l1M6PBEVHgbyRFRs+fn5AYAumM8PURTx+PFjuLq65ivwtwW8Juvh7e2t+3dJRPYpP9O35efY9Kx0TP5zMlYcXwERIgRIf+v0x7QbB/Ey45R4UynyWWIW6gfUR8LwhFzHq0fWjTQ5DzsRmRcDeSIqtgRBgL+/P8qUKYOMjIx8HZORkYHdu3ejWbNmdpP+zGuyDo6OjuyJJ7JzCw8vxOBNg3XTty3qsAiRdSNN7msc8OtXkDclp2J0xoXnTFWLzylFXg7e87rhEOgVqJiHnYjMi4E8ERV7arU63wGUWq1GZmYmXFxcbCZAzAuviYjI/KbtnoYPYz/ULWtFLQZuGIg2YW1Q1rWswb4L/l6AIZuG6HraO1TugA0XNhSocjxgOmjPqVp8binyRGR9rH/gIBERERHlS79+/dC5c2fF+l27dkEQBDx48ED3XP7x9fVF+/btcfr0aQDAzJkzUbJkSTx5ohxLnZqaCi8vL8ybN8/cl2IXNEka7Li0A4PWDzII4mVaUYvNcZuhSdLgyMMjWHBkATqs7IDBmwYbpMivv7DeZBCvEpRf5eV1cjD+XuP3kDA8AbF9Y5EwPEGXARDoFYiIkAhdsB5ZN9LkfkRkndgjT0RERGRGzzIm2pzOnz8PLy8v/Pvvvxg9ejTefPNNxMfHo3fv3hg7dix++eUX9OjRw+CYtWvXIj09Hb169bJQq61LelY65hyYg0PXD0GEiDervwlfd19F4TmZcZo7AIzdMRZvP3lb2u9y/l87p95242J0QP6rxbOqPJHtYCBPRERElAdRFJGakZrjdq1Wi5SMFKjT1QYzJaw4vgLvbn5XNyb6y3Zfom+tvgV6bTfH/M2qUVBlypTRFVgcNmwYOnfujHPnzqF27dro2LEjli5dqgjkly5dis6dO6NUqVKF3h5bo0nS4N1N72Ld+XW6db+c/QUAFIXnAKmn/LNWnxkE3h5OHrj7+K7i3PkZ155TijzAavFExQEDeSIiIqI8pGakwmO6xzOdQytqMWTTEAzZNKRAxyWPTYa7k/szvXZuHj58iNWrVwMAnJycAACRkZHo0KEDrly5guDgYADApUuXsHv3bmzdutVsbbFWpgrPRa2P0gXbTYKaYO+1vbr9TaXBa0Wtogr8L2d/QfSWaMW+oxqPwuz9s/MdtDNwJyp+GMgTERER2ZENGzbAw8PwpkNWVpZiv8BAKfhLSUkBALRr1w5Vq1YFALRp0wYBAQFYtmwZJk6cCABYvnw5goKC8NJLL5mx9ZanH7SnpKdgxr4ZWPrPUogQoRJUmNZiGsbuHGsQrO+/tj/P85qqAv+/av/D8C3DFb3v0Q2jEd0wmkE7ka0QC1aIsjAwkCciIiLKg5ujG5LHJue4XavVIulRErw8vXSp9deTrqPa/GqKKb3ODD6Dcl7lCvTaBdGiRQssWLDAYN3BgwcV49r/+usvuLm54cCBA5g2bRpmzZqV3U61Gn379sXy5csxYcIEiKKIFStWoH///gZDB2yNcc+6vBxaMhRZ2izMOzQPXx78Msfq8FpRizE7xyjXQxo6YTw1nJwin1MV+ECvQCzuuDjHavEM2omskEYDxMUBvr5AaiqwdCnUSUnAm28WaTMYyBMRERHlQRCEXNPbtVotshyz4O7krgt0K5eujEUdFimCtMqlK5u1re7u7ggLCzNYp9FoFPuFhobC29sbVapUwc2bN/HWW29hz549uu1vvfUWpk+fjp07d0Kr1eLatWvo37+/WdtuTvrzsKsEFTpX6Yx159flOC97QRSk8JyxyLqRaBncEj9s/gE92/VEqE/oM7eHiMwkJgYYOBDQGv7dUAFwf/HFIm0KA3kiIiIiM4msG5mvYM7SBg8ejOnTp+PXX39Fly5dAAAVK1ZE8+bNsXTpUoiiiFatWunGy9sC/d53AAYV5LWiFr+c+yVf5zHuaVcJKox8YSRmH8j/GPa8BHoFItwz3Gr/fRARgJMngagoZRp9o0bInDIFKY8eFWlzGMgTERERmZEtjGt2c3NDnz59MGnSJPzvf//TVcmPjIxEVFQUAGmMvLXSJGlw8tFJ1EyqiVCfUEXve2TtyHz1vBsH7blVi49+gWPYieyenEb/8CHQt6/psfDTpkFs0gTYtKlIm2a7g5yIiIiIqNBERUXh7NmzWLNmjW5dly5d4OzsDDc3N3Tu3NlyjctFzNEYhH0dho8vfoywr8MwaP0gRK2PMuh9X/zP4jzPoxbU+KzVZ1ALat3ywg4L8V7j95AwPAGxfWORMDwBkXUjAUhBe0RIBAN3Inuh0QCxsdIjIKXRBwcDLVsCr70GJCUpj1GrAaOhTEWFPfJEREREdiKnXvOIiAiI//Uk6T/XFxgYiLS0NINidq6urnjw4IE5mvrU5JT5QK9A7NfsN5gGTitqsejoIpPHBXkF4fqj69CKWqgFNXrV7IXvT3zPKd6IyHDsu0oFfPop8MEHhj3wggBMngxMmABkZUlB/MKFQGAgkJFR5E1mIE9EREREVsm4yvzCwwvxzsZ3cqwqnxO1oMa+yH0AYBCkT2k5hUE7UXGn0RgWsNNqgfffV+4nikCTJkBCAhAfL/XEB1rubwUDeSIiIiKyCvqB+9b4rQYF6hxVjsjQ5t3rldO4dlPF5xi0ExVj8vj3W7cUVehNktPoAwMtGsDLGMgTERERkcXpF6gTIBXb0+95zymIf6/xe5i9P38V5ImIAOQ4jZyOSgVERgJLlyrT6K0EA3kiIiIishhRFLElfovBWPecUucFCAbb1IIa0Q2jMbjuYMU87OxtJyKTjFPpZYIgpc/LQXtkJDB+vFWk0ZvCQJ6IiIjIBFMF4Shv+X3fNEkaHP73MOYenItdCbvy3D+3lPmMjAzOw05EeRNFYPly0z3xq1cDvr6GQbuVpNGbwkCeiIiISI+joyMAIDU1Fa6urhZuje1JTU0FkP0+AoZj38t5lsOs/bMwevvoXIvWCRCgElRMmSeiZ6fRAIcPA9OmAX//rdyuVgONGllt0G4KA3kiIiIiPWq1Gt7e3rh16xYAwM3NDYIg5HqMVqtFeno6njx5YjB9m60ojPaLoojU1FQk3kjEQ+EhElMSEegVqBj77uLggseZjw2OVQkqfNbqM0Vve5uwNqwqT0TPxng8vKMj0Lo1sHWr1Y5/zw8G8kRERERG/Pz8AEAXzOdFFEU8fvwYrq6ueQb91uhp25+pzUSmNhMOKgc4qBzw4MkDxJyNwdK4pRAhooJ3BVx6cCn7dSAqgnhAmv+9fkB9JAxPMBm4ExE9lStXgKgow/ngs7KkwB2w2vHv+cFAnoiIiMiIIAjw9/dHmTJlkJGR95RnGRkZ2L17N5o1a2aQUm4r8tP+G8k3cOXBFQR7B8PPww9rT6/F+F3jddPDOagckJiaiNSsVN0x+kG8PhVU0CJ7jKpaUOuCdwbuRPRM5GnlypcH+vY1DOIBqWc+Ph6IiLDJAF7GQJ6IiIgoB2q1Gmq1Ol/7ZWZmwsXFxSYD+bzar58erxJUGNJgCL469FWuY9xlpirN5zbPOxHRU8trWjkgez54G8dAnoiIiIgU5AJ1d1LvYMD6Abr1WlGLLw99afKY/AbtLFpHRIUup2nloqKsej74p8VAnoiIiIgM6PfA51dBg3am0RNRodFqgSlTTPfE9+hh1fPBPy0G8kRERESkc/n+ZUStj8o1bZ5BOxFZBY0G2LcPmDtXejQmp9Fb8XzwT4uBPBEREVExp0nS4OSjkxDjRLyz6R2TQbxKUEErahm0E5F1MB4P7+QEdOsG/PCD3aXRm8JAnoiIiKgYM0ijv2h6H7Wgxv7I/UjJSGHQTkSWIVejr1QJuHFDOa1cZiYwdar0Y2dp9KYwkCciIiIqRuQidmmZafgo9iMcSTyi2GdyxGRM/HOiQdp8g3INLNBaIiLkrxq9nUwrl18M5ImIiIiKifwWsXsx+EUkDE9gVXkisrycqtEbs5Np5fJLZekGEBEREZH5aZI0JoN4AYLBslpQ64L3iJAIBvFEZFkXLpgO4t97TwreAbsfD28KA3kiIiKiYuD8nfMme+JHNR4FtSB9GZbT6Bm8E5HFaTRScP7uu8ptajUQHQ0kJACxsdJjZGRRt9CimFpPREREZOcytZkYv2u8Yr1aUCO6YTQG1x2MHzb/gJ7teiLUJ9QCLSQi0hMTY1jMTq2WeuVFUdn7Xox64fUxkCciIiKyU3Jhu4Oag9h3bZ8ujV6EaND7npGRgXDPcPbEE5HlyWPiRaNpMA8eBFJS7L4afX4xkCciIiKyQ6YK281pOwf/q/Y/FrEjIusVG6scE5+VJQXxEREWaZI1YiBPREREZGdMFbYTIKBj5Y6c+52IrJZqyhTgk0+UG4pZRfr8YCBPREREZGfmHZynKGwnQsSVh1cQWpJj4InIyly7hjqzZ0P955/ScokSwKNHUs98MaxInx8M5ImIiIjsgDweft25dZh3aJ5iuzytHBGRVYmJgUNUFMrLY+L/9z/g55+lsfLx8RwTnwMG8kREREQ2ztR4+M5VOmP9hfXIErM4rRwRWadz54CoKAj6he1++00K4gMDGcDngoE8ERERkQ3LaTz8l698iS9f+ZKF7YjIOt25A3TsqKxOn5Ul9cQziM8VA3kiIiIiGxZ3N87kePj4e/GICIlgAE9E1kWjAfbuBaZOlQJ2Yyxsly8qSzeAiIiIiJ6eIAiKdRwPT0RWKSYGCA4GunUDTp4EPDyAyZMhqtUAID2ysF2+MJAnIiIislEX7l5Az196GqzjeHgiskoaDTBwoOEc8ampQL9+yIyLw57Jk5EZFwdERlqujTaEqfVERERENkgURQxcPxD/PvoXNXxr4LvXvsPDtIccD09E1unUKcMgHpCW4+OBJk1wNzycPfEFwECeiIiIyAZ9f/J7/HnlTzipnLCp5yaUL1He0k0iIsrZiRPKdRwP/9SYWk9ERERW4euvv0ZISAhcXFzQsGFDHDp0KNf958yZgypVqsDV1RVBQUEYMWIEnjx5UkSttaxvDn+DPr/2AQBkaDOw/eJ2C7eIiMgEjQaIjQX++ANYskRaJ9f14Hj4Z8IeeSIiIrK41atXY+TIkfjmm2/QsGFDzJkzB23atMH58+dRpkwZxf4rV67EmDFjsHTpUjRu3BgXLlxAv379IAgCZs2aZYErKDoJDxIweONg3bIIEYM2DEKbsDZMqSci6xEToxwTX6oU8Oef0tRzYWEM4p8BA3kiIiKyuFmzZiEqKgr9+/cHAHzzzTfYuHEjli5dijFjxij237dvH5o0aYIePXoAAEJCQtC9e3ccPHjQ5PnT0tKQlpamW05KSgIAZGRkICMj45nbL5+jMM6Vm/SsdPT+pTdEGM67nCVm4dytcyjrWvapzltU7TcXtt+y2H7Ls7pr0GjgMHAgBL0gXhQEZK5ZA1SpIv0AgFG7rab9BVRY7S/I8QzkiYiIyKLS09Nx5MgRjB07VrdOpVKhVatW2L9/v8ljGjdujO+//x6HDh3C888/j0uXLmHTpk3o3bu3yf2nT5+OSZMmKdZv27YNbm5uhXMhALZvN2+K+8rEldhzc49ivQoqXPnnCjad3vRM5zd3+82N7bcstt/yrOUaSh87hiZGhe0EUcTBfftw99GjHI+zlvY/rWdtf2pqar73ZSBPREREFnXnzh1kZWWhbFnD3uSyZcvi3LlzJo/p0aMH7ty5gxdffBGiKCIzMxNvv/02xo0bZ3L/sWPHYuTIkbrlpKQkBAUF4eWXX4aXl9czX0NGRga2b9+O1q1bw9HR8ZnPZ8rVh1fx+8LfAQCRtSOx/PhyZIlZUAtqzG83H31q93nqcxdF+82J7bcstt/yrO0aVNu2KdaJajUa9uxpMp3e2tpfUIXVfjlbLD8YyBMREZHN2bVrF6ZNm4b58+ejYcOGiI+PR3R0NCZPnoyPP/5Ysb+zszOcnZ0V6x0dHQv1S2Nhn0/fzIMz8STzCZoFN8PiTosxscVExN+LL9Tp5szZ/qLA9lsW2295Fr0GjQb4+29g505g/nxpnUoljZFXqyEsXAjH0NBcT2Hrv4NnbX9BjmUgT0RERBZVunRpqNVq3Lx502D9zZs34efnZ/KYjz/+GL1798aAAQMAAOHh4UhJScHAgQPx4YcfQqWyr4l5jiYexZKjUsXnSRGTIAgCAr0CWdyOiKyDqcJ2ffoAU6dK88SzsF2hs69POSIiIrI5Tk5OqFevHnbs2KFbp9VqsWPHDjRq1MjkMampqYpgXa1WAwBEUTR1iM2KORqD+ovqI0MrFUGKvxdv4RYREenRaJRBvCAAY8ZIwXtEBIN4M2AgT0RERBY3cuRILF68GCtWrMDZs2fxzjvvICUlRVfFvk+fPgbF8Dp27IgFCxZg1apVuHz5MrZv346PP/4YHTt21AX09kCTpMHA9QMNqtS/veFtaJI0FmwVEZGeEycMg3gAEEXAKMuKChdT64mIiMji3nzzTdy+fRvjx4/HjRs3ULt2bWzZskVXAO/q1asGPfAfffQRBEHARx99hOvXr8PX1xcdO3bE1KlTLXUJZnFQcxBaGH5BzhKzEH8vnmn1RGQ5Gg0QFyf1tM+apdyuVkvp9GQ2DOSJiIjIKgwdOhRDhw41uW3Xrl0Gyw4ODpgwYQImTJhQBC2znC3xWxTr1IIaYaX4BZmILMTUeHgHB2n5v8J2WLiQ6fRmxkCeiIiIyArdTL6JH07+AABQCSpoRS3UghoLOyxkbzwRWYap8fAAsHo18PzzLGxXhBjIExEREVmhmftn4nHmYzxf7nmsfWMtLt6/WKhTzRERFVhcnDKIB4BSpaTgnQF8kWEgT0RERGRl7qTewfy/pXmYxzcbj6ASQQgqEWThVhFRsVepklSRXn92EI6HtwhWrSciIiKyMrP3z0ZKRgrq+tfFK5VesXRziIgkHh6Ai0v2MsfDWwx75ImIiIisyKlbpzD7wGwAUm+8IAgWbhERFXsaDXDuHDB3LvD4sdQzv2ABUKUKg3gLYSBPREREZCVijsYgan2Ubt7426m3LdwiIir2jKvUy73wLVpYtl3FHFPriYiIiKyAJkmDgRsG6oJ4AHh7w9vQJGks2CoiKta2bweiogwL3Imi1CNPFsVAnoiIiMgKxN2Ng1Y0rAadJWYh/l68hVpERMWSRgPs3AmMGAG8/LJhYTtACurj+XfJ0phaT0RERGQFAjwDFOvUghphpVgNmoiKyMyZwOjRyuBdH6vUWwWL9sjv3r0bHTt2REBAAARBwLp163LdPzExET169EDlypWhUqkwfPhwk/utWbMGVatWhYuLC8LDw7Fp06bCbzwRERFRITp165TBslpQY2GHhZw3noiKxurVwHvvGQbxggDMmCEF7wCr1FsRiwbyKSkpqFWrFr7++ut87Z+WlgZfX1989NFHqFWrlsl99u3bh+7duyMyMhL//PMPOnfujM6dO+PUqVMm9yciIiKyBr9f+B0AMLDuQMT2jUXC8ARE1o20cKuIyK5pNEBsLPDdd0DfvsrtogjUrw8kJEj7JSQAkfy7ZA0smlrfrl07tGvXLt/7h4SEYO7cuQCApUuXmtxn7ty5aNu2LUaPHg0AmDx5MrZv346vvvoK33zzzbM3moiIiKiQZWozsfHCRgBAz5o90Sy4mYVbRER274svgPffz18afWAge+GtjN2Nkd+/fz9GjhxpsK5Nmza5pu2npaUhLS1Nt5yUlAQAyMjIQEZGhlnaWdTk67CX6wF4TbbC3q7J3q4H4DXZCnu6FlLaf20/7j6+i1KupdA4qLGlm0NE9m7TJmksvD5BAKZNAz76CMjKYhq9lbO7QP7GjRsoW7aswbqyZcvixo0bOR4zffp0TJo0SbE+NjYWbm5uhd5GS9q+fbulm1DoeE22wd6uyd6uB+A1WbvU1FRLN4HM6PfzUlp9+0rt4aCyu69nRGQNNBrg8GFg/Xrg22+V20UReOEFKX0+Pj67J56sEj8pAIwdO9agFz8pKQlBQUFo0aIFfHx8LNiywpORkYHt27ejdevWcHR0tHRzCgWvyTbY2zXZ2/UAvCZbcffuXUs3gcxEFEX8dv43AECnKp0s3BoisksxMcDAgYbzwRtjGr1NsbtA3s/PDzdv3jRYd/PmTfj5+eV4jLOzM5ydnRXrHR0d7eYLoIzXZBt4TdbP3q4H4DVZO3u5DlI6kngEcffi4Kx2xssVX7Z0c4jI3ly4AERFGY6FV6mAzz4DxoxhGr2NsmjVenNo1KgRduzYYbBu+/btaNSokYVaRERERJSzJUeXAAD+V+1/8HL2snBriMguyNXoNRqgTx9lQTutltXobZxFe+STk5MRHx+vW758+TKOHTuGUqVKoXz58hg7diyuX7+Ob/XGcBw7dkx37O3bt3Hs2DE4OTmhevXqAIDo6Gg0b94cM2fORPv27bFq1SocPnwYixYtKtJrIyIiIspL3N04fHfiOwBAZB1+iSaiQsA0+mLBooH84cOH0aJFC92yPE69b9++WL58ORITE3H16lWDY+rUqaN7fuTIEaxcuRLBwcFISEgAADRu3BgrV67ERx99hHHjxqFSpUpYt24dnnvuOfNfEBEREVE+xRyNQdT6KIiQesouPbiEl/CShVtFRDZJo0HpkyeBzExlGj0ANGsG7N3LNHo7YtFAPiIiAmIu8xYuX75csS63/WVvvPEG3njjjWdpGhEREZHZaJI0GLhhoC6IB4B3NryDdmHtEOjFL9dEVADffAOHwYPRJLc4acwYIDyc1ejtiN0VuyMiIiKydnF346AVDdNes8QsxN+LZyBPRLnTaIC4OMDLC1i5Epg1C0Ju+6vVUhDPNHq7wkCeiIiIqIhV8qkElaAyCObVghphpcIs2Coisnr5Gf8OSFXptVqm0dsxBvJERERERSzQKxDdanTDylMrAUhB/MIOC9kbT0Q502hMB/GCYDgmXq0G9u8HUlKYRm/HGMgTERERWYCroysAoFd4L0xvNZ1BPBEpaTTA2bPS9HBffWW6J37UKIizZ0PIyoKoVkNYuBBo0KDIm0pFi4E8ERERkQUcTTwKQJo/nkE8EenGvleqJPWiz5sHDB+urECvT60GoqOROXgwDv7wAxr27AnH0NAiazJZDgN5IiIioiKWqc3E6dunAQC1/GpZuDVEZHH6Y99VKqBmTeDYMcN9BAHo2RP48UflNHIZGbgrF7SjYoGBPBEREVERu3T/EtKz0uHm6IYQ7xBLN4eILMl47LtWqwziAalnPjISmD6d08gRA3kiIiKionbm9hkAQNXSVaESVBZuDRFZ1Pnzpse+mypiJwfvDOCLPX5yEBERERUxOZCv7lvdwi0hIovQaIDYWODaNSmt3phaDXz+ufQoL3MaOdLDHnkiIiKiIqYL5EszkCcqdvTHw8u97oIg/ejP/R4ZCXTrxjR6MomBPBEREVERY488UTFlPB5eTp2fMEEK3I2DdqbRW70RI4B69QQ4OxdtsjsDeSIiIqIilJaZpqtYH1423MKtIaIidfq06fHwzZoxaLdB584Bc+YAarUaMTFFG1pzjDwRERFREfrnxj9Iz0qHr5svQr053zNRsZGcDHz6qXK9Wi3NHU8257vvpMc2bUR4e6cX6WszkCciIiIqQgc0BwAALwS+AEEQLNwaIioSV64ALVoAu3YBTk7SXPEAi9jZMK02O5Dv1ctEloWZMZAnIiIiKkL6gTwRFQNTpwIhIcDhw9LyqFFSYB8bCyQkSGPjyebEx0uTDri4AB06iHkfUMg4Rp6IiIioCB1NPAoAeL7c8xZuCRGZhUYDnD0rjYePjQV+/91w++efA4MHAxERFmkeFY7jx6XH556TgvmixkCeiIiIqIhoRS0SHiQAACr7VLZsY4io8OlPLZeTrCypO5fp9DZNDuRr1bLM6zO1noiIiKiIJD5KRIY2Aw4qBwR4Bli6OURUmA4cAKKilEG8cS0MtVqaYo4sSqOREiY0mqc7noE8ERERUTEh98YHeQXBQcXESCK7ERsLNG2aPS+8vlGjpOAdYHE7KxETAwQHAy1bSo8xMQU/BwN5IiIiomLi8oPLAIAQ7xDLNoSICse1a8D77wMdOgCZmcrtajUQHS0VtWNxO6ug0RiOftBqgUGDCtYzn5ws/eoBIDy88NuYHwzkiYiIiIqI3CPPQJ7IDsydK3XnzpgBpKYCJUoA8+aZ7n0PDJSK27En3uLOnVOOfpDLFuQkKwt49Ch7+coV6dHbGyhZstCbmC8M5ImIiIiKCAN5IjsgisB77wHDhxum0icnA6+9xt53K3fpknJdbmULkpOBxo2BsmWze+GvXpUey5c3Txvzg4OziIiIiIoIA3kiG6bRAHFxwPbtwMyZyu1yty573q1aQoLhsiDkXrZgyBDg0CHpeWws0KdPdiAfHGy2ZuaJgTwRERFREfn30b8AgEAvfsknsimmppUTBMMeeVajtwmnTkmP5coB168Dr7ySc+JEZibwyy/Zy3KBO2vokWdqPREREVERufv4LgDAx9XHwi0hony7dk05rZwgAJ99xmr0NkgO5Dt2lB6Tk3Ped/t2w+3HjkmPDOSJiIiIiglRFHHv8T0AgI8bA3kim5CZKY2HN55WThSBBg04Ht7GJCcDl6XJQ9CypfR465bpfWNigPbtDdcdOyb96q0hkGdqPREREVERSEpLQqZWmp6KPfJEVk6jkcqbT50K7Nql3C6n0csV6ckmnDkjPfr5AdWrS89NBfLyFHXG92/u3ZO2WUMgzx55IiIioiIgp9W7OrjC1dHVwq0hohzFxEhVzFq3loJ4Jyept51p9DbvwgXpsVo1oEwZ6fndu1LihUwUgX/+UU5RJ7t8OXvO+aAg87U1LwzkiYiIiIrAndQ7AJhWT2TVTI2Hz8wEJk5kGr0duH5degwKAkqVAlT/RcN37mTvM3ky0KlTzueIj88O/OWbAZbAQJ6IiIioCNxNZaE7IquWkgIMGKDMp9ZqpegtMJBTy9mYL78EVq3KXpYD+XLlpMSK0qWlZTm9XhSlhAxjajVQu7b0/Nw56dHdHXB2Nkuz84WBPBEREVER0FWsZ488kXXRaOC/dy8cGjcGtm1Tbue0clbl55+BV18F/v039/1OngSGDQO6dwemT5fW6QfyQHaPuhzInz6dPf49MhIICQG+/15KwmjQQFovB/I+Fv5TzmJ3REREREWAPfJEVigmBg4DB+J5OZXe0xMYNAiYPRvIyuJ4eCvUtauUJHHtGnD0aM777d+f/XzWLGDs2OxAPiBAejQO5Ddtkh7btQOWLDE8n6+v9Hj2rPRYqtTTX0NhYI88ERERURHgHPJEViYuDoiKgqA/Hj4lBYiO5nh4K5WRkV2+4J9/pF73nBw8mP38zh1pXHtOPfI3b0qPe/ZIjy+/rDyfHMjHx0uPlu6RZyBPREREVASuPLgCAHBUO1q4JUSExESgY0eOh7cxcXGGy7t3Zz/XaoH09OzlQ4cM9711S/q1Azmn1p84IT3Wrat8bePCdgzkiYiIiOxczNEYfHviWwDAV4e+QsxRE9WUiKhobNoEVK0KnD+v3Mbx8FZNDrRlco+8KAIvvijN637oEJCcLI1313f6tDRaQqUCypaV1ukH8g8fAlek+60ID1e+ttwjL2MgT0RERGTHNEkaDNwwULcsQsSgDYOgSdJYsFVExdTXXwPt2wNJSdJy584Q/5sfXuR4eKsnB/IlShgunz4tjYm/eRNo3Ro4cEAK7v39pTnjAeDYMenRzw9w+K9SnH4gv2OH9NzfHyhZUvna7JEnIiIiKkbi7sZBK2oN1mWJWYi/F2+hFhEVU9euAUOHGq5bvx6Zu3djz+TJyIyL43h4Kyf3svfoIT2eOiUF7Bs2ZO+TlARMmCA9r1YtuyddDuTltHogOzg/fRp4/XXpeWKi6SnojHvkWeyOiIiIyI5V8qkElWD4lUstqBFWium7REXq88+V67KyIKSm4m54OHvibYDmv0Sml18GHB2BR4+kdHg5kP8vuQL79kmPopgdrOcWyF++bFguYdCg7NeSyXPOy9gjT0RERGTHAr0CsajDIt2ySlBhYYeFCPRi0EBUZPbuBRYsUK5XqyFWrFj07aF8W7JEGtP+55/Zc8cHB0tlDgDgyBEplR7Irmgv27ULcHWVnp85Iz3KU88BynR5WVZWdnV6mZOTYS+8cZ3EosZAnoiIiMjMIutGws3RDQCwq98uRNZl+i5RkdBogJ9/Brp0kaKzBg2yu205Jt7qnT0LREVJY9i/+SZ7mriAgOyahD//LP1qS5ZUBteiKBW302eqR95YTjUP5ZsHAPDWW6ZT8IsKA3kiIiIiM9OKWqRmpAIAqvhUsXBriIqJmBip6/b116UI0N8f2LmTc8RbsVu3gOPHpfniAek+iyw+XgrM1WppvHqFCtL6Vaukx3r1lEG7qYBcP5D38ABcXAy3q1Sm7+9oNNk9/4DU+28qBb+oMJAnIiIiMrPk9GTdc08nTwu2hKiY0Gikrlz9XOubN4EHDzhHvBW5dy87aD92zBflyzugdm3gvfekdfrzxh8+LD36+0vBdmiotCz3wkdEAIsWZSdcAFIvvnGgrT+FnSAoe+WPHTN9fycuTpm6byoFv6gwkCciIiIys0dpjwBIRe5cHFzy2JuInsmTJ8DAgco8a63WclEXKSxbJk0FV7u2FKQvWFATWq0AQOpl12qBS5eUx8k96nKPvKxBAykAlxMurl0D2rYFFi823G/OHMPgXj+Qd3UFnnvOdHsrVcpfj39RYSBPREREZGZJadKc1V7OXhAEwcKtIbJTGo2UTv/ii8Dmzcrtloy6yMC5c1LQnZEhFaFr3NgRN296AJBuvty6Bfz9txSUG5PneNcP5J2dgcaNpef6CRemetGN7+foB/KBgVIvvSmBgYY9/pYuscBAnoiIiMjMHqVLPfKezkyrJzILeTz8gAFSGXMXF2DECOuJuoohUQTS001v+/13aXtQkPEWQRdIL1kiJVeo1dJYdtnWrdKvOzY2e11aGrB6tfJ18tOLbhzI50a/x9/SJRYYyBMRERGZmZxa7+XsZeGWENkhjUZKpdfvek1PB0aOtJ6oq5i5cAGoU0cKjO/cUW7ftEl6fO015TZ5RMRPP0mPAQFAcrLh9oEDgSFDDI8zVXhO7kXX72U3vp+jPx2dv3/u1yWf0xpKLDCQJyIiIjIzObWehe6IzCC3/GlribqKmddfl6rP374N7NghrZs3D5gyBbhxA9i7V1rXtauyx1xeTpL+bKJ0aeX5tdr8F56LjAQuXgR69wZ++EF5P2fQIMDrv3usNWrk/xotjYE8ERERkZnJqfXskScyA1Pzf3E8vMWcPw+cPJm9vHo1cOoUEB0NfPyx1OudmSlVnW/SRB53LnXDq9UivvjC8HxVq5oO9gtSeC40FPj2W6BHD+W28uWBK1eAtWulNtoKBvJEREREZian1nOMPFEh0WikOeFnz5bGxQPZ+dMcD28RGo00iuG77wzX//orUKuWcv/nn5ceIyOBuLhMTJ68B3FxmRg+HChRInu/WrWUReYWLSrcwnPe3kCXLoC7+9MdbwkOlm4AERERkb1jaj1RIYqJUY6J/9//gC++kLpWw8IYxBcyjUYawVCpkum3dskSKUVd/1ciCNnj3Y3T4AHD3vPAQCA8/K6uarybG/DwobRt3DgpaE9IkFLn9X+9bdoo1xUXDOSJiIiIzIyp9USFxFRhO0EAZs2SqtaHhlqubXZK/76JSiUF1frjzOVfiRy0y4yXjU2fLv26jMesazRAYmL2slYr3SRISJDKHegLDCx+AbyMqfVEREREZqZLrWePPNGz+ecfZfeuKAKXL1umPXbO+L6JHFTrlyXYscN00G48ht2YqXMBUs+/sZwK2RVnDOSJiIiIzCwpXUqtZ4880VPQaKT5ynr3Bl59Vbmdhe3MZvVq09Xh9++XxsNrNMD69crj1Grgs88Mp30zxVSAnp+534mp9URERERmx2J3RE/J1Hj4EiWAR4+kdSxsZ1byNHH6BAHo1k0Z4KtUhr+SyEigShWgUyflPjJTAbo89/ugQVKgz1+xaQzkiYiIiMxMHiPP1HqiAjA1Hl6lkiYoV6uLb5WzIpKWlj0HvH7hOkAZxJcsKf1aLl5UFqPz8ACSk6XlqVOBjz5SBugZGYbni4ws3oXs8oOBPBEREZGZpWakAgDcnWxobiMiSzt3ThkxarXSePiICEZ3ZjZvHpCUBAQEAFu3AuHh0npT4+HbtQOCgqQffU5O0vRz06cD5coBH3wA9OqVvwC9OBeyyw8G8kRERERmJgfyrg6uFm4JkQ3QaICDB4Evv1Ru42DpQnPzJpCaarrQ/z//SEE3AHz4IfDcc1KQfu2aMj1eEKRe9py0aiX9yBigFw4WuyMiIiIys8cZjwEAbo5uFm4JkZWLiZGmkXv9deDPP6V1csU0DpYuNCdOSEXlatYEHjxQbp87V+p579IFeOcdad1zz0mPPXtm76dSAYsXA9Wqmb3JZIQ98kRERERmpuuRd2SPPFGOchoTf+AAkJLCwdKFJC1NKkD3SCrdgRMngCZNgD59gLJlgb59gZUrpW2jR2ffR3nuOWDzZsNK9KdPA1WrFm37ScJAnoiIiMjMHmeyR54oV3fvAm+/bXpMfEqKNCaeCsXixcCVK9nLZ88CLi7Zwfvs2dnbTp0CGjaUnssB+7Zt0mPp0gziLYmp9URERERmxjHyRLnIyJByuDduVG7jmPhCdf8+MHmy9Nztv/uKZ88CR46Y3n/QIClRAgAqVpQeb9yQHk2Nraeiw0CeiIiIyIxEUeQYeaLcLFwojYf39ATefVcK3gGOiS9kGo2UPn/rltSTPmOGtH7v3uxyBMaysqQK8wBQoYLhNgbylsXUeiIiIiIzSstKgwhpviaOkScycvWqNDcZAEybBgwdCrz/PicQL2QxMYblBzp2lCrQA8Dhw9IPoJwvXj8hIiBAmk4uPV1arlKlaNpOprFHnoiIiMiM5N54gKn1RAZiYoCQEODff6Vl1X+hSWAg54kvRKZqCM6cCXz+uXLfceNyTohQq6Vfl6xpU7M1mfKBPfJEREREZiSPj3dQOcBR7Wjh1hBZCTm61O/+HTZMKqfOAL5QpKUBv/4K/PWX6RqCprz0klRzMKeECJVeN3DjxoXbXioYBvJEREREZsSK9UQm7N+vjCblAdkM5AtFdLTUo26KHJDr/woEQZpbPjAw519Bamr2c3f3wmknPR2m1hMRERGZESvWE/1HowFiY6WJy8eNU25nhfqnlpYG/PlnOTx8mL1u507T+6rVwKJF0o9+D/vAgXnfQ5FvDOR0g4CKDnvkiYiIiMyIFeuJoKy2BgDe3sCjR1JPPCvUP5ORI1VYvLg+/vpLi337gAsXgLg4aVvNmtK9k1mzgDp1DFPmGzQAatWSnk+dmvfrtG0r3TRw5Cghi2MgT0RERGRGuh55Vqyn4iohAYiKMhwPD0gDuMPCWKE+FxqNFJDLKe+mfPklsHixVKHu8GEVGjcGjh7N3j5wINCsGRAerjy2Zk1g1y6pZ97HJ39tcnIq2DWQeTCQJyIiIjIjOZBnjzwVS6IozQ1vHMTLchuQXczpJzGoVFIqfGSkYXAPSGPh9clTycmio6V7KTlp3rxQm01FhIE8ERERkRnJxe44Rp6Kpc8/BzZsUK7nePhcGU8Zp9UCgwYB9+8DH3yQHdzXq5fzPRIZawjaJxa7IyIiIjIj9shTsaTRAO+/D4wZIy1365bzBOWkEBdnuqj/++8bBvd//533uXjPxD4xkCciIiIyIxa7o2InJgYIDgZmzJCWX34Z+PFHKb87NlZ6jIy0ZAutnqnAW6Uy3fv+4ouAWi1vEBXH8J6JfWJqPREREZEZsdgdFSvGOeEAsGOHtJ7j4fPN1Jj23r2BFSuU63/4AcjKysQPPxxEQkIjxMSodduOHAFq1zZbM8mC2CNPREREZEbyGHk3B/bIk53SaFD65EkpWI+JMZ0THh9vmbbZmOPHpQL/zZpJy926AS4u0nMPD+X+n3wClC8v3R8JD7+LJk2ye+SdnbOnliP7wx55IiIiIjNijzzZtZgYOAwciCZaLcTx403nfnOQdp4ePgQOHQJeew1IScleP2qUFNyfPSslNgDAO+9I08Y1bQrUqGF4nvDw7Pc/KAgQhCJoPFkEA3kiIiIiM+IYebJb/6XRC//1wAtyEB8RAfz1l9QTz8J2edq1C+jQwTCAb9UKaN8eqF9fCsjPngXOnZO21a8PvPWW6XNVrZr9XMXca7vGQJ6IiIjIjHQ98px+juyJKALTpinT6AFgwgSpBz4+XnpkEJ+rt982DOIBqSbgsmXSc+O3r0qVnM/l7Jz9/MGDQmkeWSkG8kRERERmpBsjzx55sgcajdQ1vHJldqSpT06jZ2G7fMnMlKaaM6Y/93tQkOG2ypVzP6evL3D7tlTNnuwXA3kiIiIiM+IYebIbMTHKivRvvAHxl18gZGVBVKshMI2+QBISTCc16JcV0A/kS5YESpfO/Zy7dwMLFgBjxhRaM8kKceQEERERkRnJgTx75MmmmZpWTqUCZs1CZlwc9kyejMy4OM4PX0AXLkiPgYFS8A4oywroB/Jdu+ZdwK5qVWDuXMDfv/DbS9aDgTwRERGRGcmp9RwjTzZt0yZl17FWq8v/vhsezp74pyAH8o0aSb3zsbHSo/79EP0Cdp98UpStI2vG1HoiIiIiM2KPPNm8mzelAnbGOK3cM5MD+cqVcy4rUL48sHMnULYsUKZM0baPrBd75ImIiIjMSJ5+jmPkySZpNMAbbwA3bgB+fjnnf1O+yMX+g4OBEyeyA/lKlXI/rkULoHp187ePbAd75ImIiIjMiD3yZLMWLwYGDZKiT0B6PmAAp5V7SosWSW+h7P33swP5ihUt0yayXeyRJyIiIjIjjpEnm6TRGAbxADBlivQYEcEg3khqqnSPY+1a09uTkoCxYw3Xbd0KXLsmPQ8NNW/7yP4wkCciIiIyI/bIk83JyABGjjQM4oHsyc1JYdYsaXa+N96QagCmpAAffyzd8/jjD+keyL17QIkSUrF/Y1lZRd5ksnFMrSciIiIyI46RJ5uh0QCnTgHTp0uTkRtjcTsFjQb45RdpujfZ8ePA3r3ZCQwHDgBpadLzhw9Nn+fSJamoHVF+MZAnIiIiMhNRFHWp9eyRJ6sWE2M4T7yTExAVBXzzjdRdzOJ2AKSAvFkz4PZtoEYNYONGZeLCli3A2bOGx+SF90eooBjIExEREZnJk8wnuuccI09W6/JlwyAeADIzgTFjpB8Wt9P56Sfg0CHp+eXLpvfZsUOasQ8AXnwR2LNHuY9Klf12N23Kt5YKjmPkiYiIiMxEHh8PMLWerIxGA8TGAvv2AY0aGQbxgLQcHy9FmCxup/PVV9Kjn1/O+5w6ld0jP2uWcky8Wg3s2pW9zGnl6GkwkCciIiKr8PXXXyMkJAQuLi5o2LAhDsndXjl48OABhgwZAn9/fzg7O6Ny5crYtGlTEbU2f+RA3kntBAcVEyHJSsTESBOZt2wJNGmS3X2sj+PhFR48yO6N37TJdIAOSG9nVhbg6wvUry9NOydvk0coNG2afRzfZnoaDOSJiIjI4lavXo2RI0diwoQJOHr0KGrVqoU2bdrg1q1bJvdPT09H69atkZCQgLVr1+L8+fNYvHgxypUrV8Qtzx2nniOrIPe+//470K+fNE+acQ/8hx8qo032whuQU+l9fYE6dZQB+oIFUmkBWZ06gCAAkZFAQoL0K0hIkJYBqZ7giBHAkCFFeRVkL3hrmIiIiCxu1qxZiIqKQv/+/QEA33zzDTZu3IilS5dizJgxiv2XLl2Ke/fuYd++fXB0dAQAhISE5Hj+tLQ0pOlVnEpKSgIAZGRkICMj45nbL5/D+FwPH0slqt0c3Qrldcwlp/bbCrY/Z8KyZVC/8w4ErRYiACGH/TIjIiBGRkK4eBFixYpSEJ/P9hSX9//CBQGAA0JCtMjIyEKfPlJSw8WLAipWFBEYCHz2mQMuXpTe5Zo1s5CRId0wKVtW+pFeR3p84QXpR3+dua/BWrH9hufJDwbyREREZFHp6ek4cuQIxo4dq1unUqnQqlUr7N+/3+Qxv//+Oxo1aoQhQ4bgt99+g6+vL3r06IEPPvgAarmLTM/06dMxadIkxfpt27bBza3wqslv377dYPlcyjkAgDZda3Vp/6YYt9/WsP2Ay5078EhMRLK/PwDg5bffhvBfWXUBgFxgXT+g16pU2HHlCp6kpEgrTpyQfgrI3t//LVsqAngOLi7/YtOmIwbb5LfM3b0xAN//1h7Fpk3/mqWtObH334G1e9b2p6am5r3TfxjIExERkUXduXMHWVlZKCt3V/2nbNmyOHfunMljLl26hJ07d6Jnz57YtGkT4uPjMXjwYGRkZGDChAmK/ceOHYuRI0fqlpOSkhAUFISXX34ZXl5ez3wNGRkZ2L59O1q3bq3LEAAAl8suQBxQukRpvPLKK8/8OuaSU/ttBdsvMeh9FwRAEHRBvG4fAFkjR0I1dy6ErCyIajW08+ejZZ8+Fm+/peS3/Vu2SKOSGzXyz/H/53Xr1Lp7IO3a1UbTprULu7kmFZffgbUqrPbL2WL5wUCeiIiIbI5Wq0WZMmWwaNEiqNVq1KtXD9evX8eMGTNMBvLOzs5wdnZWrHd0dCzUL43G58uAlCbp5uhmE19OC/v9KGrFuv1XrwJvv62b1FwQReUE5wCgVkM9YoQ0ODs+HkJYGBwKaSy8vb//8n1FHx81HB2VmT8AcO9e9vPWrR2xaFH2mPiiYO+/A2v3rO0vyLEsdkdEREQWVbp0aajVatw0qpx98+ZN+OUwx5O/vz8qV65skEZfrVo13LhxA+np6WZtb0HIVevdHAsvfZ/IpNGjTQfubdqYLmLHaeUKJCYme8q4sWOlZWMaDbB+ffayVgsMGiStJypsDOSJiIjIopycnFCvXj3s2LFDt06r1WLHjh1o1KiRyWOaNGmC+Ph4aPUqb1+4cAH+/v5w0i8bbWGPM/6rWs855Mmczp4F1q5VrlergSVLTJdMp3xbuhSIispezilAj4tT3kvJygLi483fRip+GMgTERGRxY0cORKLFy/GihUrcPbsWbzzzjtISUnRVbHv06ePQTG8d955B/fu3UN0dDQuXLiAjRs3Ytq0aRhiZfM4sUeezO7YMeDll6XoslYt9r4XsvR06d5HfgL0SpVMzy3PeeLJHDhGnoiIiCzuzTffxO3btzF+/HjcuHEDtWvXxpYtW3QF8K5evQqV3jfkoKAgbN26FSNGjEDNmjVRrlw5REdH44MPPrDUJZjEeeTJrL78Ehg2LHu5Vy+gWzcpwgwLY+Cu59gxIDQUKFFCWhZF4PhxoEYNafn+fWd88okK9+4BU6YAJUtK6//+2/T5TAXogYHS3PKDBkmBvv69FKLCxkCeiIiIrMLQoUMxdOhQk9t2yYNT9TRq1AgHDhwwc6ueDXvkqVBpNFL+dlgYsG+fYRAPAGPGSIF8RIRFmmet5s8HhgwBmjeXRhgIAvDpp8C4ccBnn0l1/5Ytq4Hdu6VsBkdHYM4c6djYWOX5cgvQIyOlsgS8l0LmxtR6IiIiIjORA3n2yNMzi4kBgoOBli2B8uWlgN0YB2QrbNkiBfEA8OefwLZt0vNx46THDz4Arl0DjhzJnv5y8WLg9m3p+c6dhuebODHvUgMcyUBFgYE8ERERkZnIxe7YI0/PRKMBBg6UxsHnhgOyDSxZArRrZ7hu3jzg/Pns5RIlgEqVHJCS4gRAREAAkJoK/PIL8OgRsHevtJ+HB+DrKyVBMEAna8BAnoiIiMhMdD3yrFpPT0sUgZUrTQfx771nurgd6e59GDt0CNi4MXv54UNAqxX+WxKQmCg927sX+OMPqdhdxYrAzZvSqAZ57DyRpXGMPBEREZGZyMXu2CNPBabRACdOAGvWAMuXK7er1UB0tPTDAdkKZ84oK80DwJ07gN5MlwryMXv3SmPlAaBDB8CN/wuTlWEgT0RERGQmHCNPTyUmRplK36ABcOSItM64950BvMLNmzlv27Qp521qtVRq4NIl6QeQAnkia8PUeiIiIiIzSclIAQB4OHlYuCVkMzQaICrKMIhXqaRB21euSGXU86q2Rjh6VHoU/suaV6uleyH6jNPk1WrR5OiEy5fN00aiZ8FAnoiIiMhMktOTAQDuTu4WbgnZjD17lDnhWq2UPs9y6Pm2fbv0+PXX2fc+unQx3KdZs+znFSveR1xcJtq0Aa5fN9zvnXek+ytE1oSBPBEREZGZpKRLPfLujgzkKRcaDUqfPClFi7//rtzOavQFcuMGcPq01BvftWv2vY/27Q33W78ecHaWnrdufRWBgVJBO+P7KJzVj6wRx8gTERERmYmcWs8eecpRTAwcBg5EE60W4scfZ69XqUyPh6c8nTolPVauDPj4ZK/39jbcT6sFMjOB9eszkJmZAKA6KlXKfutlvI9C1og98kRERERmIvfIc4w8mfTfHGnCf1GjPAkaRozgePhnIPeeV6pkuD4uTrlvVhbg4iLoxtIHBgKLFnFWP7J+Fg3kd+/ejY4dOyIgIACCIGDdunV5HrNr1y7UrVsXzs7OCAsLw3Kj6TgmTpwIQRAMfqpWrWqeCyAiIiLKhW6MPFPryZgoStXpTc0P36kTx8M/AzlgN+5Fl3vb9anVQMWKhrn0kZHS/RPeRyFrZtFAPiUlBbVq1cLXX3+dr/0vX76M9u3bo0WLFjh27BiGDx+OAQMGYOvWrQb71ahRA4mJibqfPXv2mKP5RERERLliaj2ZJIpA797AxInKbczjfmY59cgXpLed91HI2ll0jHy7du3Qrl27fO//zTffIDQ0FDNnzgQAVKtWDXv27MHs2bPRpk0b3X4ODg7w8/Mr9PYSERER5Vd6VjoytZkA2CNPejQa4JtvgB9+ABwcgDZtIG7ZAiErC6JaDYF53ACAxETpbRo+XDlNXF7kQN7U/ZDISKBNG2mfsDDprc7IeObmEhU5myp2t3//frRq1cpgXZs2bTB8+HCDdXFxcQgICICLiwsaNWqE6dOno3z58jmeNy0tDWlpabrlpKQkAEBGRgYy7OT/bPk67OV6AF6TrbC3a7K36wF4TbbCnq6luJDHxwPskaf/xMQAAwdmp9O3bw+sW4fMy5dx8Icf0LBnTziGhlq2jVaibVvgxAngzBlgzRrldo1GSqGvVMnwvodWC1y8KD3PKbEhMJD3Ssj22VQgf+PGDZQtW9ZgXdmyZZGUlITHjx/D1dUVDRs2xPLly1GlShUkJiZi0qRJaNq0KU6dOgVPT0+T550+fTomTZqkWB8bGws3NzezXIulbJcn1bQjvCbbYG/XZG/XA/CarF1qaqqlm0AFJKfVO6oc4aR2snBryOL+K2xnMCZ+wwZpfWAg7oaHM7rUc+KE9Lh2rXKb/v0QlUpKl5fHsWs0QFoa4OgI5NKPR2TzbCqQzw/9VP2aNWuiYcOGCA4Oxk8//YTIHCpVjB07FiNHjtQtJyUlISgoCC1atICP/pwVNiwjIwPbt29H69at4ejoaOnmFApek22wt2uyt+sBeE224u7du5ZuAhWQrtAde+MJAM6dUxa2kycoN+qoKu7+/Tf7uYuLVFJAripvfD9EqwUGDZLS5QMDs9PqQ0OlkQtE9sqm/nn7+fnh5s2bButu3rwJLy8vuLq6mjzG29sblStXRrz8f7UJzs7OcHZ2Vqx3dHS0my+AMl6TbeA1WT97ux6A12Tt7OU6ihM5tZ7j4wkAYGp2Jha2M0m/TvWTJ9J4+YAAKaD/6KOc74cEBuZcsZ7I3tjUPPKNGjXCjh07DNZt374djRo1yvGY5ORkXLx4Ef7+/uZuHhEREZEOK9YTNBpg82YgOhqQZ2mS5z/jBOU5+vtvw+Vjx6THTz4BVqxQ7q9SZQfuOVWsJ7I3Fg3kk5OTcezYMRz77//Oy5cv49ixY7h69SoAKeW9T58+uv3ffvttXLp0Ce+//z7OnTuH+fPn46effsKIESN0+7z33nv4888/kZCQgH379uG1116DWq1G9+7di/TaiIiIqHiTe+Q9nDws3BKyiJgYIDgYeOUVYN48ad3gwcCVK5ygPA/6qfUAcOoUcPkyMHWqtNyjR/YUcgDQsWP2/ZDcKtYT2ROLBvKHDx9GnTp1UKdOHQDAyJEjUadOHYwfPx4AkJiYqAvqASA0NBQbN27E9u3bUatWLcycORNLliwxmHpOo9Gge/fuqFKlCrp27QofHx8cOHAAvr6+RXtxREREVKzpxsgztb74MVXYThCA99/nBOVGDh0C6tYFvvwye11iovQYECA93rwJTJsmTRPXurU0c19CAvDBB9J2OZ1e/zkDebJ3Fh0jHxERAVEUc9y+fPlyk8f8888/OR6zatWqwmgaERER0TNhan0x9e+/QK9eyoHcoih1KwcHW6ZdFpKZKfWgu7kBy5ZlF60DpKSFAQOk5//8I6XIDxkC3LghratZU3o7b93KrmL/7rvSY2AgMHYsMGuWNEWd/NbKU88xtZ7snU0VuyMiIiKyFSx2VwzFxUlzw+t3EcuKaWG7H3/Mngf+3XeBevWk53LSgr6hQ7OL2wFArVrAli1SIH/pkrSucuXs/UuUAKpVk4L806elHvsnTzj1HBUPNlXsjoiIiMhWsEe+mFmyRIoy5SC+XbvsgdzFtLCdKAKffpq9vHp19vO4OGXSAgB89x3w4IH0vGZN6fHMGSA5WerNDwkx3L9aNenx7Nns89evLwXzRPaMgTwRERGRGeiK3Tmy2J3dM9W9vG0bsH9/sS5sl5QkBeGyn36SgntASn3XT7OXnT8vPTo7Z6fHazTSY2CgtF6fHMj/9hvwX5ktHDggpe0T2TMG8kRERERmoCt2xx55+yaKUtU147pPWVlASkqxLmx37172cwcHqWD/tWvScmAgULZs9nZ5Vr4nT6RHPz+gTBnD85Urp3wNOZDfuzd7nSgCgwZl3wAgskcM5ImIiIjMQJdazzHy9kmjkcqnd+4MrFyp3F5Mx8Tru39fevT3z06Tj4mR3rq7d7OL2q1bB1y4YHismxuQnm647uBBZU+7HMgby8rKnoqOyB4xkCciIiIyg9SMVACAm6ObhVtChS4mRqqm1qsX8PvvUo54v37Ffky8MTmQL1UK8PSUnn/yiVRdfvJkablyZeDVV4GKFaWAX3b2LFCliuH5TPW0V65sOkWf91HI3jGQJyIiIjKDx5mPATCQtzvyeHj9VHpBkCLThIRiPSbemBzIu7kBu3dnr9dqgXnzpOe1a2ev9/MzPN7ULNXGPe3OzkCDBob78D4KFQcM5ImIiIjM4HGGFMi7OLhYuCVUqP76S1luXauVosvAwGI9Jt6YPEbewUEZlMvLNWpkr3PJx/8qpnraX3op+/l77/E+ChUPDOSJiIiIzEDukXd1dLVwS+iZaTRST/u+fcC4ccrtzOM2Se6RDwjILmZnrHr17OdeXrmfL6eedv1A/vXXeR+FigcG8kRERERm8CRTKr/t6sBA3qbFxEiDulu2BJo0kbp7fXw4Hj4f5EA+MBBYtCh7vUqVPY2cfiD/2WeGQb9aDURFSW//4sU597Q3aQK4uwMlSwLh4Wa5FCKr42DpBhARERHZIzm1nj3yNkweD2+cSr9lizSgOz5e6olnEG+SfrG7yEhgyhQpGJ81Cxg+XEq5l+eKB4BatYDr16W3vSBvrYuLNP+8KErj8YmKAwbyRERERGYgp9ZzjLwNO3dOGcQDQHKyFGEygAcgBd4nT5ZGzZpAaGj2enmMfMmS0mNwsBTI//OPtFy5MuDoqDzf07y1puaYJ7JnTK0nIiIiMgNdjzxT622LPB4+Ph746CPldo6HNxATA4SFOeDjj5ugYkUHfPVV9ja5R14O5OXp5f74Q3rUL3RHRAXDHnkiIiIiM2CxOxsUE6NMpXd2BtLTpbxtjoc3kD3yQJrIXRQFvPsu0KaNlDKfUyB//br0qD8+nogKhj3yRERERGbAYnc25uRJqbKacSr90qXA1aucH96EuDjTIw/kwnb6Y+QBqZCdPgbyRE+PPfJEREREZsBidzZAo5Gi0SNHgAkTlJOdA1L0yfHwCqII/PST6W1//ik9Go+Rl3vkZUytJ3p6DOSJiIiIClmWNgsZ2gwALHZntUyl0RvjePgcffQR8M030nNBECGKAtRqEVqtgL//Bi5fBpKSpO3e3tKjfiBvXLGeiAqGqfVEREREhUweHw8wtd4qXbmiTKMXBGki82I8P7xc50+jyX2fYcOAadOk5a++Ai5ezMTkyXsQF5eJ2rWl9fv2ZSc4eHpKj9WrZ1epf/55wMnJLJdBVCywR56IiIiokMlp9QBT662KRgOcOAF8/LEyjV4UpegyIaFYzg+/eDEwaJD0NqhU0jh343IAxkkMXboAQ4YAGRlAePhdBAYCVapI08sdPSrtIwiA63//C/j5STP6XboENGhQdNdGZI8YyBMREREVkuuPrmP+kfnoULkDAMBJ7QSVwARIqzBnDjBypOlx8EB2Gn0xHA+v0WQH8YAUqA8aJFWfl9+K7Ar12cetWyetL1s2e12VKtKjHMi7uUk3BmQVKkg/RPRs+MlCREREVEh6/NoDM/bNQPPlzQFwfLxV0GqBWbOAESMMg3hBKNZp9LKEBKBlS+X9jawsKTFBZqpCvfE+AFC5svQoB/IeHoXaXCL6D3vkiYiIiArJfs1+g2WOj7cgjQY4dkyaPu7XX5XbRRH48UfA17fYpdHLEhOBF1/Mntddn3GdP1M1/0zVApR75OVCd+7uhdNWIjLEQJ6IiIjITDg+3kKMB3MLgvSo3+2sVgONGhXLAB4Arl4FOnWSgviqVYG33gLGjMl+y4wTFE6cMDxeP4khIyN7vdwjL2OPPJF5MLWeiIiIqJAIEAyW2SNvARqN6Yr0n3/OVPr/xMQAISHA8ePScq9ewOjRwMmT2ft065b9/M8/ge7dpeeRkVJl+4QEZTE8QKpQ7+ubvcxAnsg82CNPREREVEjUKjUytZm6ZfbIW8CPPyoHfGu1QP36xbYivT65aJ3+WzRhAtC3rzQ9nJeXlBZ/5Yq0/PffQKtWQGYm0KIFMG+eVMAuN6VKAbdvS8+ZWk9kHuyRJyIiIiokakFtsMxid0Xs+nXgiy+U6/Ur0kdEFNsgHsi7aF1wsPR45Yr0uH69FMRHRAAbNuQdxANSIC9jjzyReRQ4kA8JCcEnn3yCq1evmqM9REREZAP4fcA0B5VhsiNT64uIRoOyBw/CoVUr4NYtwN+fafQ5qFRJuU6/aJ1xIH/pkvTYtm3+gngAKFky+zkDeSLzKHAgP3z4cPzyyy+oUKECWrdujVWrViEtLc0cbSMiIiIrxe8DpqlVhj3yTK0vAjExcAgLwwvTp0O4eBHw9gb27ZPS6HMbzF1MqdWG87ob3+cwDuQvX5YeCzL3u34gz9R6IvN4qkD+2LFjOHToEKpVq4Z3330X/v7+GDp0KI7KE0YSERGRXeP3AdOMU+vZI29m/w34FvRzxZOSAAcHptHnYPFiKbW+Xj3T9zlyCuRDQ/P/GuyRJzK/px4jX7duXcybNw///vsvJkyYgCVLlqBBgwaoXbs2li5dCtG4yAgRERHZHX4fMMQx8kXs3DnlgG+tNnvAdzF17BjQvr0UrOuPfsnIAL75Rno+apTp+xxyIJ+QADx+LM01DwDOzvl/ffbIE5nfUwfyGRkZ+Omnn9CpUyeMGjUK9evXx5IlS9ClSxeMGzcOPXv2LMx2EhERkRXi9wFDxmPks7RZFmpJMbFzp3Kd/oDvYmrCBGDTJuDoUWDBguz1v/4qBeZlywJdupg+Vp4H/tw5YObM7PW1a0vT1uUHi90RmV+Bp587evQoli1bhh9//BEqlQp9+vTB7NmzUbVqVd0+r732Gho0aFCoDSUiIiLrwe8DphmPkf/x1I9oGdoSkXU5RrvQXbumizRFlQqCVgtRrYbAwna4eTP7+erVwLRpgCAA8+dL6wYOBJycTB9btao0hv7+fWD8+Oz1Wi0waBDQpk3eby9T64nMr8CBfIMGDdC6dWssWLAAnTt3hqOjo2Kf0NBQdOvWrVAaSERERNaH3wdMMx5KIELEoA2D0CasDQK9indwWWg0Gqm7eP58ID0daN4cmUuX4uDKlWjYsyccCzKY207du5f9/PJlqWe+Rg1gzx5pXf/+OR/r4gJUrChNU2c8Mkaepq4ggTxT64nMo8CB/KVLlxAsD57Jgbu7O5YtW/bUjSIiIiLrxu8DpmWJylT6LDEL8ffiGcgXhpgYqTtZf1z8lClAUBDuhocX+554mRzIBwZK9z2OH5eWs7IAHx8gJCT342vUkAJ5Y/kdtcAeeSLzK/AY+Vu3buHgwYOK9QcPHsThw4cLpVFERERk3fh9wDQBgmKdWlAjrFTxHrNdKP6rUG8QxKtUeUelxYxWK6XFA0D9+tLj5ctSATxAGusuKP+ZGqheXbnOeJq63LBHnsj8ChzIDxkyBNeuXVOsv379OoYMGVIojSIiIiLrxu8Dphn3yKsEFRZ2WMje+MIQF8cK9fmQlJT9NtWpIz0mJGT3yteunfc5atQwXB43TjlNXW70A/mUlPwdQ0QFU+BA/syZM6hbt65ifZ06dXDmzJlCaRQRERFZN34fMC0tK81geVWXVSx0VxhE0bD8uowV6hXu3pUe3d2BKlWk5wkJ2T3ytWrlfQ7jQP7llws2auH337Ofv/56/qvdE1H+FTiQd3Z2xk39Upj/SUxMhINDgYfcExERkQ3i9wHT0jINA/nnyjxnoZbYCY0GiI0Fxo4F1qyRcsLlvPCC5HrbMY0G2LED2LYNyMzMHh9fqhQg1/27dKlgPfJVqkijFmQFeYs1GmDo0Oxludq9RpP/cxBR3gocyL/88ssYO3YsHj58qFv34MEDjBs3Dq1bty7UxhEREZF14vcBJVEUFT3yvu6+FmqNHYiJAYKDgZYtgc8+k9YtWABcvSoF9wXJ9bZT8lvUqpU0LVxoKHDkiLStVKns8gH//iul3Ds5SdPL5UWuXC8rVy7/bTI1AkKudk9EhafAt8y/+OILNGvWDMHBwajz38CbY8eOoWzZsvjuu+8KvYFERERkffh9QCkLyor1pVxLWaAldsBUYTtBANq3l7qHi3kvPACcPg0MGGC4TqMBZs6UnpcqBfj6Am5uQGqqtK5GDcDETJEmyZXrS5eWAvv8qlRJ6s3X/9VxBARR4Stwj3y5cuVw4sQJfP7556hevTrq1auHuXPn4uTJkwgKCjJHG4mIiMjK8PuAUoY2Q7FOJRT4qxYBprt1RZHduv/RanNORkhIkB5dXKR7HxUqZG8rSDAtj5Mv6D2TwEBg0SIpeAc4AoLIXJ5qEJu7uzsGDhxY2G0hIiIiG8LvA4YyRGUgT0/h6FFg6lTlenbrQqMBTpwAvv0WMDH7IwBpnDwAbNkipd5XrgycOiWtW7tWWpefEQmNGkmP4eEFb2dkpJTqHx8v/coYxBMVvqeuRnPmzBlcvXoV6enpBus7der0zI0iIiIi28DvA9kyxUxLN8H2nT4NtG0L3L4tLQuC1BPPbl3ExABRUdLbAUhvzYABwNKl0hh0Y6IojU4wXjdokBRk5/VWvvIK8NdfQM2aT9dejoAgMq8CB/KXLl3Ca6+9hpMnT0IQBIj//TUR/qsgmmXqLwkRERHZFX4fUDKVWk8FMGcOMGJE9nJkJPDhh8CVK8W+W1ejMQziASmQHz9e+omPB1avBr75xvA449EJQHbhubzeTkEAXnzx2dtOROZR4IFb0dHRCA0Nxa1bt+Dm5obTp09j9+7dqF+/Pnbt2mWGJhIREZG14fcBJfbIP4O9ew2DeABYvlyqzBYRUayDeAD4/nvDIB6QgnQ5II+IMD2tnEplOI0cwBEKRPaiwIH8/v378cknn6B06dJQqVRQqVR48cUXMX36dAwbNswcbSQiIiIrw+8DSvpj5J3Vzlj7xloLtsaG/PUX0KGDcj3nLAMArF8PjB2rXG8ckMtzxstUKqnoHAvPEdmnAqfWZ2VlwdPTEwBQunRp/Pvvv6hSpQqCg4Nx/vz5Qm8gERERWR9+H1CSA/kgryBcHHYRjup8zvNVnK1fD7z6qrK7GSj2XccajXSP4513pOVGjYBDh6T7G6YC8v/+d9RZtQp44w3pOQvPEdmfAgfyzz33HI4fP47Q0FA0bNgQn3/+OZycnLBo0SJU0J/fgoiIiOwWvw8oZWql1HpnB2cG8flx9izQv78UxL/5JtC0KRAdnXOkWozExEiF6uQx7iEhwK5dwK1bOQfkXl6Gy1WrZj9n4Tki+1PgQP6jjz5CSkoKAOCTTz5Bhw4d0LRpU/j4+GD16tWF3kAiIiKyPvw+oCT3yDupnSzcEhtgXIK9eXOp6/nVV4t917FGYxjEA8C1a1IQn1tAbtwjX6qU+dpIRJZX4EC+TZs2uudhYWE4d+4c7t27h5IlS+oq1RIREZF94/cBJTmQd1Y7W7glVs5UCfZ33wU6dmTXMYADB5TV5vNTaZ6BPFHxUqBidxkZGXBwcMCpU6cM1pcqVarYfmgTEREVN/w+YJo8/ZyzAwP5XP39t3JMfDEvbKfRACdPlsaKFQKiopTb81MuQD+Qd3EBXF0Lt41EZF0K1CPv6OiI8v9n777jm6z2P4B/spruRfcelL1XrQqigmWI4kREQeSCoFz14viJAxz3XtR7RVC54gBxgxMnKJYlsqHsUjoopaWDFrpXmjy/P06TNCQtLW2apP28X6++kjw5eZ7zNGlzvs8553siIrrk2rBEREQksD1gmX75OfbIN0OSRBr1S3XhxHZiPrwSOt01hm0RESK41+lani5AqRTBe3U1e+OJuoJWLz/33HPP4dlnn8WFCxesUR8iIiJyAGwPmOMc+Rb47DNg40YRneoXOO/Cie2M8+GNI1lkMmDzZuDMGWDLFiArC5g1q2X70ye8YyBP1Pm1eo78O++8g/T0dISEhCAyMhJubm4mzx88eLDdKkdERET2ie0Bc4YeeQ6ttyw7G5g/X9x/+WVg+vQun9guLc18PrwkieR2o0e3/tfi4QEUFDCQJ+oKWh3IT5482QrVICIiIkfC9oA5wxx5Dq03p9OJpebKyoCrrgKeflqMBe+iAbxefr75trbMMtDPk2cgT9T5tTqQX7x4sTXqQURERA6E7QFzHFrfjM8/F+PFnZ2BTz4RQXwXd/gw8Mgj4r5MJkGSZFAoJLz3nuyKr29waD1R19HqOfJEREREZI5D65uwapUYRg8AtbXA9u22rY+N5eQAH30E3HADcPGiGKBw7Fg9XnllB9LS6ls8H94S9sgTdR2tvhwql8ubXVqGGWyJiIg6P7YHzOkDeSc5e+QN9Nnc9CQJeOghIDGxSw6rFxnqjfPiIyKADRsANzegf//iNv9KfHzErZ9f2/ZDRPav1YH8999/b/JYo9EgOTkZH3/8MV566aV2qxgRERHZL7YHzGklcfFCKeewcQNL2dz0a8Z3sUDemKHeuC03F6ioEIF8e3jkEaC+Hpg6tX32R0T2q9XfNLfeeqvZtjvvvBN9+/bFunXrMKst44GIiIjIIbA9YE4fyKsUKhvXxI4oFJa3dcE145u7phEY2D7HiI8HvviiffZFRPat3ebIX3XVVUhKSmqv3REREZED6srtAfbIX6K2Fpg3z3RbF14zvrDQfFsXvaZBRO2gXb5pqqur8dZbbyE0NLQ9dkdEREQOqKu3B/Rz5FVy9sgDAD78EDhxQnQ3//qrWHqui64Zn5kJPPywuC+TiVQBja9paDS2rR8ROZ5WB/I+Pj4myW0kSUJ5eTlcXV3x2WeftWvliIiIyD6xPWBOBzFumj3yAEpKgH/9S9xftAgYMsSm1bGVnBwgJQV48kngwgVg+HCxEl9ubpe9pkFE7aTV3zRvvvmmyRe3XC6Hv78/4uPj4aNPlUlERESdGtsD5gw98pwjD/z970BeHhAbizatp+bALs1Q7+oKfPedCN7j4mxbNyJyfK0O5B944AErVIOIiIgcCdsD5jhHvsFffwGffSbGkH/2GaBW27pGHc5ShvqaGtvVh4g6n1Ynu/voo4/w9ddfm23/+uuv8fHHH7dLpYiIiMi+sT1gTieJqK1Lz5FftQoYOVLclyTg+HHb1sdGLGWo1+lEhnoiovbQ6kB+yZIl8PPzM9seEBCAf//73+1SKSIiIrJvbA+Y0w+t77I98vpuaEkybnvoIbG9i7k0iAeYoZ6I2lerA/ns7GxER0ebbY+MjER2dna7VIqIiIjsG9sD5rTo4uvIN7dQeheSmQncd5/pti686h4RWUmrA/mAgAAcOXLEbPvhw4fRrVu3dqkUERER2Te2B8x1+TnyljK4dbFu6LQ04KabgPx8YMAA4MgRYMsWICury+b8IyIrafU3zdSpU/Hoo4/Cw8MDo0aNAgBs27YNjz32GO655552ryARERHZH7YHzOkD+S47R37fPtPHXawb+sMPgdmzjY/vvx/o39929SGizq3Vgfwrr7yCrKws3HjjjVAqxct1Oh2mT5/eZefEERERdTVsD5gzBPJdcWi9ViuWnAOAefOAu+/uUgulZ2WJ9ACNPfMMcM89XeZXQEQdrNWBvJOTE9atW4d//vOfOHToEFxcXNC/f39ERkZao35ERERkh9geMNelh9Zv2QLk5gK+vsCbb3apJeeKioBx40xz/AHG9AAM5InIGq74myYuLg5xluZCERERUZfB9oBRlx5a/8UX4vauu7pUEC9JwNy5QGqq+XNdLD0AEXWwVie7u+OOO/Daa6+ZbX/99ddx1113tUuliIiIyL6xPWBOn7W+S/XI5+QA334LfPmleHzvvbatTwc6fRq4/npx+kol8MILIngHulx6ACKygVYH8tu3b8eECRPMto8fPx7bt29vl0oRERGRfWN7wFyXmyO/ahUQGQnceSdQUwNERwMjR9q6Vh1i1SogNhbYtk08vvde4OWXxVx5Zqknoo7Q6kC+oqICTk5OZttVKhXKysrapVJERERk39geMNel5sjn5Ijsbo3XjT9zRsyT7+T0p954Tvznn4vtYWHA6NHsiSci62t1IN+/f3+sW7fObPvatWvRp0+fdqkUERER2Te2B8zVS/UAusgc+bQ00yAeEI/T021Tnw6Ummp+6vrEdkREHaXVl4xfeOEF3H777cjIyMANN9wAAEhKSsIXX3yBb775pt0rSERERPaH7QFzOklEd12iRz4uDpDLTSPaLpLdbf9+821d5NSJyI60+ptm0qRJWL9+Pf7973/jm2++gYuLCwYOHIjNmzfD19fXGnUkIiIiO8P2gDlDj3xXmCMfFgYkJgIbNojHXSS7W14esGSJuC+TieH1XeTUicjOXNEl44kTJ2LixIkAgLKyMnz55Zd48sknceDAAWi12natIBEREdkntgdMdak58jU1QHKyuL9oETB7dqePZLVaYP58oLQUGDYM+OYbkbm+e/dOf+pEZIdaPUdeb/v27ZgxYwZCQkLwxhtv4IYbbsDu3bvbs25ERERk59geMNIvP9cl5sivWQPk54sI9rnnOn0km50tEvJ/953ogf/gA5Gwn4ntiMhWWnXJOD8/H2vWrMGqVatQVlaGu+++G7W1tVi/fn2XTWxDRETU1bA9YFmX6ZHPywOef17cf/JJwMLqBZ3JqlViwIE+S/2DDwKDBtm0SkRELe+RnzRpEnr27IkjR45g2bJlOHfuHN5++21r1o2IiIjsDNsDTesy68g/8wxQXCyi2blzbV0bq7K01Nzq1WI7EZEttfiS8YYNG/Doo49i3rx5iIuLs2adiIiIyE6xPdC0LtEjX1EhJocDwLvvAmq1betjZZZW2dMvNcch9URkSy3ukd+xYwfKy8sxdOhQxMfH45133kFRUZE160ZERER2hu2Bphl65DvzHPkffgCqqsTyc/Hxtq6N1dXXm2/jUnNEZA9aHMhfddVV+OCDD5CXl4eHHnoIa9euRUhICHQ6HTZt2oTy8nJr1pOIiIjsANsDTev0PfI5OYB+GsW994r11zq5778Xt/pT5VJzRGQvWp213s3NDQ8++CB27NiBo0eP4oknnsCrr76KgIAA3HLLLdaoIxEREdkZtgdMSZJkzFrfGefIr1ol0rTv2SMeqzrhOV7izz+BDz8U97/8EtiyBcjKAmbNsmm1iIgAtGH5OQDo2bMnXn/9deTk5ODLL79srzoRERGRA2F7wNgbD3TCHnl9xrfGk8UXL+7UGd8yM4HbbgM0GuCuu4C77+ZSc0RkX9oUyOspFApMnjwZP/74Y3vsjoiIiBxQV24PaLQaw/1ON0e+uYxvndDZs8CECSIx/9ChwJo1XWIWARE5mHYJ5ImIiIjaasWKFYiKioKzszPi4+Oxd+/eFr1u7dq1kMlkmDx5snUr2Ix6nTErWqfrkY+LA+SXNBk7acY3/QyC1FTx+J57AFdX29aJiMgSBvJERERkc+vWrcOCBQuwePFiHDx4EAMHDkRiYiIKCwubfV1WVhaefPJJjBw5soNqaplG16hHvrPNkQ8LA55+2vi4k2Z8y8kBZs82XTP+mWc69QwCInJgDOSJiIjI5pYuXYrZs2dj5syZ6NOnD1auXAlXV1esXr26yddotVpMmzYNL730EmJiYjqwtuYa98grZAob1sRKnJ3F7ahRnTbj2/r1pkE80KlnEBCRg+tkY7+IiIjI0dTV1eHAgQNYuHChYZtcLseYMWOwa9euJl/38ssvIyAgALNmzcKff/7Z7DFqa2tRW1treFxWVgYA0Gg00Gg0Tb2sxaprqwGIYfX1lhYft3P634HF34VGA+WHH0IGoH76dEiBgSILnB1ptv4tIEnA6tUKXNrHpVBIiIyst/rptrX+tsb6256jnwPrb7qflmAgT0RERDZVVFQErVaLwMBAk+2BgYE4efKkxdfs2LEDq1atwqFDh1p0jCVLluCll14y2/7777/DtR0mQRfWiSkAckmOX3/9tc37s5VNmzaZbQvbtg1Dc3JQ4+ODTV5e0Nnx+Vmqf3OKipyRl+eO3Fw3JCcPglKphU4nh04ng1yuw9y5h3HkSDaOHLFShS/R2vrbG9bf9hz9HLp6/auqqlpcloE8EREROZTy8nLcf//9+OCDD+Dn59ei1yxcuBALFiwwPC4rK0N4eDhuuukmeHp6trlOJwtPAicAtUqNCRMmtHl/HU2j0WDTpk0YO3YsVI3XiJckKBcvBgCo/vEPjLv1VhvVsHlN1r8ZH30kw7x5Cuh0MgBiTP0zzwAPPliPjAwZYmMlhIX1A9DPehVvcCX1tyesv+05+jmw/oJ+tFhLMJAnIiIim/Lz84NCoUBBQYHJ9oKCAgQFBZmVz8jIQFZWFiZNmmTYpmtYHk2pVCI1NRWxsbEmr1Gr1VCr1Wb7UqlU7dNobBiRrZQrHbIRqmf2+0hKAg4fBlxdoXjkESjs/Nxa+n7m5ADz5jVeVU+sLzd9ugLR0QpER1uvjs1pt8+jjbD+tufo59DV69+a1zLZHREREdmUk5MThg4diqSkJMM2nU6HpKQkJCQkmJXv1asXjh49ikOHDhl+brnlFlx//fU4dOgQwsPDO7L6AIxZ6zvdGvJvvSVuZ84EfH1tW5d2lJbWOIg3ys3t+LoQEV0J9sgTERGRzS1YsAAzZszAsGHDMGLECCxbtgyVlZWYOXMmAGD69OkIDQ3FkiVL4OzsjH79TIc7e3t7A4DZ9o6iz1rfqdaQP3MG+PlncX/+fNvWpZ3FxQFyuWkwr1AA3bvbrk5ERK3Rib5tiIiIyFFNmTIF58+fx6JFi5Cfn49BgwZh48aNhgR42dnZkMvtdyChPpDvVGvIv/66iHSvuQbo1cvWtWlXoaFATIxxaTmFAnjvPSAszLb1IiJqKQbyREREZBfmz5+P+U30/G7durXZ165Zs6b9K9QKhkC+swytX7kS+N//xP2dO4FVqzrV2vEbNoggXq0GPvsMuOoqBvFE5Fjs99I2ERERkYPQaMUceYVcYeOatIOcHODhh42PJQl46CGxvRPQ6YBnnxX3H30UuPNOBvFE5HgYyBMRERG1UafqkU9LE8F7Y1qtcRy6g/vsM5GI39MT+L//s3VtiIiuDAN5IiIiojbSZ63vFMnuLGV86ySZ4DZvFoMLABHEd+tm2/oQEV0pBvJEREREbdSpkt2VlJg+7iSZ4N5+G7jxRqCmRjz287NtfYiI2oKBPBEREVEbdaoe+W3bxO111wFbtgBZWQ6f6C47W8yHb+zhhzvNtH8i6oIYyBMRERG1UaeaI3/ggLi97jpg9GiH74kvLwemTjXf3omm/RNRF8RAnoiIiKiNOlWPvD6QHzrUtvVoJ48+KlbQu1QnmfZPRF0UA3kiIiKiNuo0PfLV1cCJE+K+gwfyOTnA448Da9YAMhnw5JMieAc6zbR/IurCOsFlYyIiIiLbqteKQN7R15GXHT0qxpwHBAAhIbauzhVbtQqYPdu4it7EicB//gM89pgYTt+9O4N4InJsDOSJiIiI2qiz9MjLDh4Ud4YOFd3YDignB5gzxxjEA8CGDWJ7WBgDeCLqHDi0noiIiKiNOssceZNA3kGlpQE6nek2JrYjos6GgTwRERFRG+l75DtNID9kiG0r0gbZ2ebbmNiOiDobmwby27dvx6RJkxASEgKZTIb169df9jVbt27FkCFDoFar0b17d6xZs8aszIoVKxAVFQVnZ2fEx8dj79697V95IiIiogZaSQvAsefIy+vqHD7RXW0t8K9/ifv6mQFMbEdEnZFNA/nKykoMHDgQK1asaFH506dPY+LEibj++utx6NAhPP744/jb3/6G3377zVBm3bp1WLBgARYvXoyDBw9i4MCBSExMRGFhobVOg4iIiLo4nSTGcitkjhvIe545A1l9PeDnB4SH27o6V2TRIjnS0oDAQOD4cWDLFiArC5g1y9Y1IyJqXzYd/zV+/HiMHz++xeVXrlyJ6OhovPHGGwCA3r17Y8eOHXjzzTeRmJgIAFi6dClmz56NmTNnGl7zyy+/YPXq1XjmmWdaVb/Kuko41zmbbVfIFXBWOpuUa4pcJoeLyuWKylZpqiA1ztTSiEwmg6vKtcVlVTAm36nWVBsaHJa4ObldUdma+hpoddp2KeuqcoWs4VJ6bX2tYchiYxqNBjXaGpPzbqqsnovKBXKZuH5Vp62DRqtpl7LOSmdDL0xrymq0GtRp68zOqbKuEipJBbVSbRimeWnZSzUuW6+rR219bZNlnRROUClUrS6r1WlRU1/TZFmVQgUnhZNJ2UvPyVJZnaRDtaa6Rfu9XFmlXAm1Ug0AkCQJVZqqdilr6e++8flcrmxT7OF/RH296d9MZ/gf0fhz56X0uuz/Ez17/h/R3GeDbE//edV/JhyR27lz4k7fvg6X6C4nB/jss1745hvxt/PBB0Dv3uKHiKgzcqiJXLt27cKYMWNMtiUmJuLxxx8HANTV1eHAgQNYuHCh4Xm5XI4xY8Zg165dTe63trYWtbXGQKasrAwAEPlWJGAex2N87Hj8MOUHw+OA/wY0GQCMihiFP+77w/A4alkUiqqLLJYdGjwUu2Ya69lnRR+cKT1jsWxvv944POew4fGw94chpSjFYtlIr0icmCOGymk0Goz6bBQO5B2wWNbPxQ/n/nHO8HjcZ+OwPXu7xbKuKleUPFVieHz7utuxIWODxbIAUPesMQid9t00fHfyuybLXnzyoqFRP/un2fj06KdNls0alYUQL7FEzuMbH8fKgyubLHvq4VOI8o4CACxMWoile5Y2WTZ5djL6+vcFALyy/RX8c8c/myy784GdGBYyDACwdPdSLNy8sMmym6ZtwnWR1wEA3t3/Lh77/THzQkfFzfq712NC9wkAgE+OfIK//fy3Jvf7xW1f4M7edwIAvkn5Bvd+f2+TZT+8+UNMHzAdAPBr+q+Y/NXkJssuv2k55g2bBwDYdmYbxn4+tsmyS25YgieuegIAsP/cfly95mqzc9J7/trnsWjUIgDA8fPHMfiDwU3ud0H8Arx646sAgKySLPT4X48my84dMhdvjXsLAHC+8jxCl4c2Wfb+/vdj1aRVAESQ5PNfnybL3t7rdqy9fS00GhGANVfW0f5HRHhG4K2YtwznNvKjkZ3nf8RRIPexXPi7+QNw8P8RTV9DIztg6JF34KH16ob2D4KCbFuRVlq1CpgzRwmdricAYOxYYNIkG1eKiMjKHCqQz8/PR2BgoMm2wMBAlJWVobq6GhcvXoRWq7VY5uTJk03ud8mSJXjppZdaXI/C84X49ddfDY+12qZ7jYqLi03K1tU13aNaWlJqUraqqunewYqKCpOyFRUVTZatqqrCpk2bAACbNm1CaUlpk2Xr6upM9ltcXNxkWa1Wa1K28Hzz0xcal83Py2+27G+//QZnhbiKkpOT02zZbdu2wUvpBQA4k2M5qNHbsmULAtXi85GZm9ls2T+3/4kzLmJ/aXlpzZb9a+dfKHQV53+ysOnPGgDs3r0blcdFz9rx88ebLbt/337glLh/uPhws2WTk5Phelr0wCaXJDdb9vDhw/g1R7wf+0v3N1v2+PHj+LVQlD1afrTZsidPnsSvF0TZtKrmf2dpaWn4tUKUza62kJmokczMTPxaK8oW1BY0W/ZM9hnDZ620vunPOiA+W/qyNdrmo6T8vHyTz3BzHO1/RHW1GOGg/z/R2f5H/JH0R6f9H0H2Qx/Iyx04j7C6tOFvPyDAthVpBf1SczqdcQTB5s3GpeaIiDormdTUWMsOJpPJ8P3332Py5MlNlunRowdmzpxp0uP+66+/YuLEiaiqqsLFixcRGhqKnTt3IiEhwVDm6aefxrZt27Bnzx6L+7XUIx8eHo7XNrwGtYfarLxcJjcMNQbQ7LBkmUxmGBLc2rJ12rpmh822pqxapkZQYRDyA/JRK9U2WRaAYajx5fZ7aVmNVtPsENvWlHVSOBmGwmp0GuguXUcGgEwnQ+D5QFwMugg0dIA0VVZPpVAZhj3W6+qbHbrbEWW1Oq3JMF/9ORX4F0CSS1DKlYbenUvLXqojyuokXbNDghVyhWF4v77spefUXNnW7LcpcrncsI6zJEnNTkdoVdmGv3uZToagwiCc8T1jcj6WyurZ+/8IuSRHRHEE8gPyIcmlVv3d2+v/iMafO5VKddn/J3r2+D+itLYUwR7BuM7/OsRGxqK0tBSenp5Nvp5apqysDF5eXu32+1y0eRFe+fMVzBk8B+/d8l471LBjaTQa5E6ciKhNm4BXXgGef97WVWqRLVuAG26wvH306A6vzhXTaDT49ddfMWHCBKhUlqdt2TPW3/Yc/RxYf6E1300O1SMfFBSEggLT3riCggJ4enrCxcUFCoUCCoXCYpmgZoaJqdVqqNXmAXuEbwTcvNwsvMLxSFoJUqGEYK9gyBSONe+tKZJWgnRBQoh3SKc7p6huUTwnO6X/W+os5wM0nFNx5/z/0Bnep/yKfDg7OcPLzcvWVaFmdIqh9foeeX9/21akFdwsNNO41BwRdQUONf4rISEBSUlJJts2bdpk6H13cnLC0KFDTcrodDokJSWZ9NATERERtafOkOzOEYfWr16tvydGBikUEpeaI6IuwaY98hUVFUhPTzc8Pn36NA4dOgRfX19ERERg4cKFyM3NxSeffAIAmDt3Lt555x08/fTTePDBB7F582Z89dVX+OWXXwz7WLBgAWbMmIFhw4ZhxIgRWLZsGSorKw1Z7ImIiIjamw6Ov/yck4MF8sXFxkB+3TotTp3ajWnT4hEd7XjDcomIWsumgfz+/ftx/fXXGx4vWLAAADBjxgysWbMGeXl5yM42JsGKjo7GL7/8gn/84x9Yvnw5wsLC8OGHHxqWngOAKVOm4Pz581i0aBHy8/MxaNAgbNy40SwBHhEREVF7MSS76ww98g4ytP7bbwGNBhg0CLjtNgm//lrMnngi6jJsGsiPHj262SRJa9assfia5OTmM3LPnz8f8+fPb2v1iIiIiFpEn0TRYQP5mhqoGlawcJQe+S+/FLf33GPbehAR2YJDJbsjIiIiskeGHnm5gwby588DACSVCjIv+06smJMDfP89sHUrIJMxkCeiromBPBEREVEbaSUHT3bXEMgjIEBEx3Zq1Sr9uvHi8TXXAJGRYog9EVFX4qDfNkRERET2w7D8nIMmu5MVFoo7fn62rUgzcnJMg3gA2LVLbCci6moYyBMRERG1kcMnu2sI5CU7nh+flmYaxAOAVgs0WgCJiKjLcNBvGyIiIiL74ejryMuKisQdO85YHxdnPupfoQC6d7dNfYiIbMkxv22IiIiI7IijD613hB55Ly/A1dX4WKEA3nsPXHKOiLokJrsjIiIiaiNHT3Yn0ye7s+M58suWAZWVQHQ08MEHQM+eDOKJqOtiIE9ERETURoYeebmD9sjrl5+z0x75334DXn5Z3P/Xv4Abb7RtfYiIbM0xLxsTERER2RGHT3an75G3sznyOTnAu+8Ct90G1NcDU6cCU6bYulZERLbHHnkiIiKiNuo0Q+vtqEf+0jXj+/QB1qwB5I75KyYialf8V0hERETURg6d7E6SjMnu7GSOvKU141NTDdUkIuryGMgTERERtZFDLz9XUQFZTY24r9HYti4NuGY8EVHzHPDbhoiIiMi+OHSP/IoVhrvKAQPEmHYbyckBtmwBLl40f45rxhMRGXGOPBEREVEbOWyyu5wc4LnnDA9lOh3w0ENAYmKHr+126Zz4xrhmPBGRKQbyRERERG3ksMnumhvD3oFRs6U58QDw/feAt7foiWcQT0RkxECeiIiIqI0cdh35uDhAJhMJ7/RsMIZ93TrLPfHe3sDo0R1aFSIih+Bgl42JiIiI7I/DDq0PCxPD6BtINhjDXlcHvPOO+XbOiSciapqDfdsQERER2R+HDeQBoFs3AMDpxETUp6UBs2Z12KFraoDp04GsLMDDQwTvAOfEExFdDofWExEREbWRQwfyubkAgOI+fRDWwZHzCy+IYfVKJfDRR0B8vJiezznxRETNYyBPRERE1EYOvY58Tg4AoKahZ76jJCUBS5eK+199Bdx2m7jPAJ6I6PIc8NuGiIiIyL447DrykmToka/uwEB+1SpgzBhjgrsLFzrs0EREnQIDeSIiIqI2ctjl50pKgOpqAECNr2+HHFK/1FxjDz1kGBhAREQt4GDfNkRERET2x2GXn8vOBgBIvr7QqdUdcsjmlq4nIqKWYSBPRERE1EYOm+zujz8AANKgQR12yMBA821cao6IqHUc7NuGiIiIyP447ND69esBANItt3TYIS9dM55LzRERtR6z1hMRERG1kUMmuyssBP76CwCgmzQJOHrU6ofcvx94911x/8svgaAgLjVHRHQlGMgTERERtZFDLj/3++8ia/2gQUB4eIcE8qtWidupU4F77rH64YiIOi0H+rYhIiIisk8Omezu99/F7bhxHXK42lpg7Vpxf9asDjkkEVGnxUCeiIiIqI0cLtmdTmcM5G+6qUMO+fPPYrW7sDBg9OgOOSQRUaflIN82RERERPbLkOzOUZpWR48CBQWAmxtw9dUdcsiPPxa3990nEtwREdGVc5BvGyIiIiL75XBD63/7TdyOHg10wPrxBw4Av/wi7t9/v9UPR0TU6TGQJyIiImojh0t2px9Wn5ho9UOtWgUMHy5G8wPArl1WPyQRUafnIN82RERERPZLBwdafu74cWDbNnHfyvPjc3KAOXNEcny9hx4S24mI6MoxkCciIiJqI6khUrX7HvlVq4D+/YH6evH4zz+teri0NGNPvJ5WC6SnW/WwRESdnp1/2xARERHZP4cYWm+pe3zuXKt2j7u6mm9TKIDu3a12SCKiLsGOv22IiIiIHINDJLvr4O5xnQ548knTbQoF8N57Ygk6IiK6ckpbV4CIiIjI0RmWn7PnHvm4OPNtVuwe37cP2LFD9Mr//jug0YhDMYgnImo7BvJEREREbaTvkbfrQH7dOtPHjbvHNZp2P9z69eJ20iTgmmvaffdERF0aA3kiIiKiNrL7QL60FHjmGXH/0UeB226zave4JBkD+cmTrXIIIqIujYE8ERERURvZfbK77dtFpvq4OGD5cqsf7ssvgZMnAbUaGD/e6ocjIupy7PTbhoiIiMhx2P068klJ4vb6661+qFOngHnzxP3nngO8vKx+SCKiLoeBPBEREVEb2W2P/NmzwFVXGXvhb7jBqodbtQro1QsoKxOPAwOtejgioi7Lzr5tiIiIiByPXS4/t2oVEBkJ7NkjHru4ADfeaLXDWVqm/uGHrbpMPRFRl8VAnoiIiKiN7C7ZXU4OMHu2aVRdVwfU1FjtkB28TD0RUZdmJ982RERERI7L7taR37rVNIgHrB5Vd/Ay9UREXZqdfNsQEREROS7D0Hp7SHYnScD775tvt3JUfWlvfONl6omIqH1x+TkiIiKiNrKrZHeffw78+SegVIroWqfrkKh62zZxO3AgsGyZVZepJyLq8hjIExEREbWRXfTI5+QA338PPP20ePzii8CMGWI4fQdE1Vu3itvERGD0aKseioioy2MgT0RERNQGkiRBgpiPbrMe+VWrRMp4/fj2fv1EQK9SdUi3uCQBmzeL+wziiYiszw7GfxERERE5Ln1vPGCjQF6/7lvjSeopKUBBQYdV4dQpICsLcHICRo7ssMMSEXVZDOSJiIiI2qBxIG+TdeTtYN23DRvE7ahRgLt7hx2WiKjLYiBPRERE1Ab6pecAG/XIx8UB8kuO28Hrvv3yi7idMKHDDklE1KUxkCciIiJqA5MeeVskuwsLA8aONT7u4HXfMjKApCRx/+abO+SQRERdHpPdEREREbWBzefIp6cb1357+WVg5swOXfdt+XKR7G78eDE4gIiIrI+BPBEREVEb6NeQB2wUyL/4IlBTA4wZAzz/PCCTddih09OB1avF/X/8o8MOS0TU5XFoPREREVEb2DTZXWkp8O234v6//tWhQfyqVUCPHkBlpXicldVhhyYi6vIYyBMRERG1gU2T3X36qeiN79MHGD68ww6rX/FOkozb5s0T24mIyPoYyBMRERG1gc3myG/aBDz5pLg/Z06H9sbbwYp3RERdGgN5IiIiojbQB/LyjmxWffghcNNNQG2teOzi0nHHhl2seEdE1KUxkCciIiJqA32yOxk6qEdcP669sYcf7tBx7WFhQGKi8XEHr3hHRNTlMZAnIiIiagNDj3xHDas/dcp0cjpgk3Ht+fniduFCkehu1qwOPTwRUZfG5eeIiIiI2kCf7K7DeuQrKsy3dfC49oICIDlZ3H/sMSAwsMMOTUREYI88ERERUZt0eI/8Tz+JW31yOxuMa9+0SdwOHswgnojIFtgjT0RERNQGHZrsrrYW+OYbcX/tWiAgQPTEd/Dk9J9/FreN58kTEVHHYSBPRERE1AaGZHcdsfzbL78AJSVAaChwxx2iN76DZWcD334r7t9+e4cfnoiIwKH1RERERG3SoT3y//ufuJ02zSZBPAAsWwbU1wPXXw8MH26TKhARdXkM5ImIiIjaQJ/szupz5I8cAZKSxALuDz9s3WM1QasFvvhC3F+wwCZVICIiMJAnIiIiapMO6ZE/cwa45x5x/447gMhI6x2rGTt2iIz1Pj7ATTfZpApERAQG8kRERERtog/krTZHftUqIDoaSEkRj200nj0nB1i6VNyfPBlwcrJJNYiICAzkiYiIiNrEkOzOGuvI5+QAc+YAkmTctnCh2N6BVq0SgwB+/FE89vbu0MMTEdElGMgTERERtYFVh9anpAA6nek2rRZIT2//YzVBfy2hcTXeeqvDryUQEVEjDOSJiIiI2sCqye6Sk823KRRi7fgOkpZm82sJRER0CQbyRERERG1gtR55jQb48ENxXz//XqEA3nsPCAtr32M1Iy7OfFsHX0sgIqJLKG1dASIiIiJHZpVkdyUlwLhxojvc1xfYuRPIyxPRcwcG8QBw/rzpYxtcSyAiokswkCciIiJqA32yu3brkdfpgHvvBfbsEVnlPv0U6NlT/NjARx+J21tuAf7xD5tcSyAiokswkCciIiJqA8PQ+vaaI79uHbBhA6BWA0lJwJAh7bPfKyBJwM8/i/uzZgGjR9usKkRE1AjnyBMRERG1gT7ZXbssP7dqFTBtmrhfV2c52V0HSkkBTp8W1xRuvNGmVSEiokYYyBMRERG1Qbv1yF+6ZrwkAQ89ZNN13n76Sdxefz3g5mazahAR0SUYyBMRERG1gSHZXVt75I8ft7t13r75RtzeeqvNqkBERBYwkCciIiJqg3ZJdidJwPvvm2+34TpvmZnA/v2AXA7cfrtNqkBERE1gIE9ERETUBu0ytP7bb4HvvhPrxcsb9mPjdd701xUSEoCAAJtUgYiImsBAnoiIiKgN2pzsrqoKeOwxcf/554EzZ4AtW4CsLJEq3gY+/BB47TVxf+dOkYOPiIjsB5efIyIiImqDNvfIr1gBnDsHREUBzz4LODvbdKH2nByRY09Pn3MvMZHrxxMR2Qv2yBMRERG1gSGQv5JmVVoa8M9/ivsvviiCeBvbv9/ucu4REdElGMgTERERtYE+2Z1M1sqh9atWAT17AmVl4nFtbTvX7Mr89Zf5Nhvm3CMiIgsYyBMRERG1wRX1yF+6ZjwAPPywTdeM19u4UdzaSc49IiKygHPkiYiIiNrAkOyuNT3yaWlNj1+3YcR8/Dhw7BigUgEHDwJFRaInnkE8EZF9YSBPRERE1Ab6HnkFFC1/UVycWGqucY+8HYxf/+QT0Q0/bhzQr59Nq0JERM3g0HoiIiKyCytWrEBUVBScnZ0RHx+PvXv3Nln2gw8+wMiRI+Hj4wMfHx+MGTOm2fLWpA/kK7QVyClr4dB4Ly/R7a1nB+PXa2vl+Phj0TScM8dm1SAiohZgIE9EREQ2t27dOixYsACLFy/GwYMHMXDgQCQmJqKwsNBi+a1bt2Lq1KnYsmULdu3ahfDwcNx0003Izc3t4JoDW7O2AgBOVZ1C9xXdsepgCxZdX7cOqKsDYmKAzZttuma83s6dIbhwQYaICGD8eJtWhYiILoOBPBEREdnc0qVLMXv2bMycORN9+vTBypUr4erqitWrV1ss//nnn+Phhx/GoEGD0KtXL3z44YfQ6XRISkrq0HrnlOXgk8OfGB7rJB0e+vmhy/fM689r3jzg+uvtYhL6xo3RAERvvKIVswSIiKjjcY48ERER2VRdXR0OHDiAhQsXGrbJ5XKMGTMGu3btatE+qqqqoNFo4Ovra/H52tpa1DZa3q2sYck3jUYDjUZzxXVPKUiBBMlkm1bS4mThSQS6BFp+UWEhVA3npbn7bqANx28vv/xSj9RUXygUEqZPr7eHKrWK/j1sy3tpS6y/bTl6/QHHPwfW33Q/LcFAnoiIiGyqqKgIWq0WgYGmgW9gYCBOnjzZon383//9H0JCQjBmzBiLzy9ZsgQvvfSS2fbff/8drq6ura90g6K6IsggMwnm5ZDjTPIZ/Hr8V4uvCdu6FUMBlMTEYFtyMpCcfMXHbw+bNkVgxYpBAETi/NdeO4axY7NtWqcrtWnTJltXoU1Yf9ty9PoDjn8OXb3+VVVVLS7LQJ6IiIgc2quvvoq1a9di69atcHZ2tlhm4cKFWLBggeFxWVmZYV69p6dnm46vjdLi4Q0PQytpoZAp8L/x/8P0QdPNC+bkQLZtGxRvvw0A8LjzTkyYMKFNx26rnBzg9tuVAPRL58mwcuUgPPFEP3sY7d9iGo0GmzZtwtixY6FqnETQQbD+tuXo9Qcc/xxYf0E/WqwlGMgTERGRTfn5+UGhUKCgoMBke0FBAYKCgpp97X//+1+8+uqr+OOPPzBgwIAmy6nVaqjVarPtKpWqzY3GOcPnYGzMWHy+4XNMGz8N0d2izQutWiUmnzdaO14xeTIUNm6wZmVZWs5ehjNnVIi2cBr2rj3eT1ti/W3L0esPOP45dPX6t+a1THZHRERENuXk5IShQ4eaJKrTJ65LSEho8nWvv/46XnnlFWzcuBHDhg3riKo2KcwzDP09+iPM00I3dk6OWRAPuRwID++4CjYhNNR8mx0sZ09ERJfBHnkiIiKyuQULFmDGjBkYNmwYRowYgWXLlqGyshIzZ84EAEyfPh2hoaFYsmQJAOC1117DokWL8MUXXyAqKgr5+fkAAHd3d7i7u9vsPCxKSzPv9tbpgPR0m2erN6YgkADIoFBIeO89ma2rRUREl8FAnoiIiGxuypQpOH/+PBYtWoT8/HwMGjQIGzduNCTAy87OhlxuHEj47rvvoq6uDnfeeafJfhYvXowXX3yxI6t+eXFxgEwGSI2y29tJt7d+EMS0aTr06rUL06bFIzracYe1EhF1FQzkiYiIyC7Mnz8f8+fPt/jc1q1bTR5nZWVZv0LtJSxMDKPPbsgEr1AA771ns974nBwxSCAuDti8WWy7+WYJLi7F7IknInIQDOSJiIiIrKmmBjh3Ttxfuxa45hqbBfGNc+7J5cYR/9ddJ2HvXptUiYiIrgADeSIiIiJrOnQIqK8HAgKAu+8Ww+xt4NKce/rba64B/PxsUiUiIrpCzFpPREREZE36ru4RI2wWxANAcrJ5zj0AmDev4+tCRERtw0CeiIiIyJp27hS3I0bYtBqff26+TS4Hrruu4+tCRERtw0CeiIiIyFpKSoAffxT3x4yxWTUyMoCvvhL39cn/FQrg/fdtvgIeERFdAc6RJyIiIrKWTz8FqquBfv2Aq66yWTVWrBCr340fL4L39HSx+h2DeCIix8RAnoiIiMhafvhB3M6aZbP58UePitXuAODvfxfBOwN4IiLHxqH1RERERNag1RoT3V1/vU2qcPYscMstQFUVMHYskJhok2oQEVE7YyBPREREZA0nTwLl5YCrK9C3b4cfftUqICoKyMoSjydONM6PJyIix8Z/50RERETWsHu3uB0+HFB27GzGS9eMB4AnnhDbiYjI8TGQJyIiIrKGffvEbXx8hx86Lc18zXitViS5IyIix8dAnoiIiMgajh8XtwMHdvih4+LMc+spFCJTPREROT4G8kRERETWcPKkuO3Vq8MPXVlp+lihEJnrma2eiKhz4PJzRERERO2tqEj8AEDPnh1++GefFevGjxkDPPcc14wnIups7KJHfsWKFYiKioKzszPi4+OxV79UiwUajQYvv/wyYmNj4ezsjIEDB2Ljxo0mZV588UXIZDKTn142uBpOREREXdSff4rbkBDAza1DD/3998B334le+KVLgdGjGcQTEXU2Ng/k161bhwULFmDx4sU4ePAgBg4ciMTERBQWFlos//zzz+O9997D22+/jRMnTmDu3Lm47bbbkJycbFKub9++yMvLM/zs2LGjI06HiIiIurpVq4A77hD3z50TjzuIJIneeAB4+mmgf/8OOzQREXUgmwfyS5cuxezZszFz5kz06dMHK1euhKurK1avXm2x/Keffopnn30WEyZMQExMDObNm4cJEybgjTfeMCmnVCoRFBRk+PHz8+uI0yEiIqKuTL/umyQZtz30UIet+7Z7t5ia7+oKPPNMhxySiIhswKZz5Ovq6nDgwAEsXLjQsE0ul2PMmDHYtWuXxdfU1tbC2dnZZJuLi4tZj3taWhpCQkLg7OyMhIQELFmyBBEREU3us7a21vC4rKwMACBpJUhayeJrHI3+PDrL+QA8J0fR2c6ps50PwHOydzKdDNCJqWVk/2Tp6U2v+2bl8e05OcBLL4n7d90FeHpa9XBERGRDNg3ki4qKoNVqERgYaLI9MDAQJ/WZXi+RmJiIpUuXYtSoUYiNjUVSUhK+++47aLVaQ5n4+HisWbMGPXv2RF5eHl566SWMHDkSx44dg4eHh9k+lyxZgpf033yNZQGSq+M3Ak1kAhJ4TnaP52T/Otv5ADwnO+UPfwDAlhNbbFwTagmpe3dALjcN5jtg3bdVq8RAAP1hQ0KsejgiIrIxh8tav3z5csyePRu9evWCTCZDbGwsZs6caTIUf/z48Yb7AwYMQHx8PCIjI/HVV19h1qxZZvtcuHAhFixYYHhcVlaG8PBwIAqQecnMyjsiSSsBmQBiAJmC52SveE72r7OdD8BzsneFlYVwc3LD9YHX27oq1BJhYcD77wN/+5t4LJdbfd03/Wj+xtcOXn8dePhhJrkjIuqsbBrI+/n5QaFQoKCgwGR7QUEBgoKCLL7G398f69evR01NDYqLixESEoJnnnkGMTExTR7H29sbPXr0QHp6usXn1Wo11Gq12XaZQubwDcDGJEg8JwfAc7J/ne18AJ6TPZPkEiAHVCqVratCLTVrFvDvfwOZmcC6dcCdd1r1cGlpNhvNT0RENmLTZHdOTk4YOnQokpKSDNt0Oh2SkpKQkJDQ7GudnZ0RGhqK+vp6fPvtt7j11lubLFtRUYGMjAwEBwe3W92JiIiImtSQbwcdsPxt9+6A7JLrVR0wmp+IiGzI5lnrFyxYgA8++AAff/wxUlJSMG/ePFRWVmLmzJkAgOnTp5skw9uzZw++++47ZGZm4s8//8S4ceOg0+nw9NNPG8o8+eST2LZtG7KysrBz507cdtttUCgUmDp1aoefHxEREXUxOh1w4YK47+tr9cN99ZVpknyFwuqj+YmIyMZsPkd+ypQpOH/+PBYtWoT8/HwMGjQIGzduNCTAy87OhlxuvN5QU1OD559/HpmZmXB3d8eECRPw6aefwtvb21AmJycHU6dORXFxMfz9/XHttddi9+7d8Pf37+jTIyIioq6mvNw41t3Hx2qHyckBVq4E/vUv8fj554EbbxQ98QziiYg6N5sH8gAwf/58zJ8/3+JzW7duNXl83XXX4cSJE83ub+3ate1VNSIiIqLW0ffGu7iIHyt47z1g3jxjT/yNNwIvv2w+xJ6IiDonmw+tJyIiIupUrDysPifHNIgHgK1bgdxcqxyOiIjsEAN5IiIiovZk5UB+1SrTIB4wZqknIqKuwS6G1hMRERF1GlYI5HNygNRUIDkZePVV8+eZpZ6IqGthIE9ERETUntoYyOfkiLXhIyIADw/gtdeAN9807YXv3x84cUL0xDNLPRFR18NAnoiIiKg96QP5bt1a/dJVq4A5c4xJ7y2RyYD16wEnJzGcnlnqiYi6HgbyRERERO2ppETcenm16mU5OZcP4gHRM5+dDYwezQCeiKirYrI7IiIiovZUVydu1epWvSwpyXIQL7+ktcb58ERExECeiIiIqD3V14tbleqyRXNygC1bgJ9+Al580fx5hULMkVcojI85H56IiDi0noiIiKg9aTTiVtl8M8vSfHgvL6CiwjSJ3axZwD33cD48EREZMZAnIiIiak/6HvlmAnlL8+FlMmDrVsDPzzxoDwtjAE9EREYM5ImIiIjaUwsC+bQ08/nwkiTy5A0axKCdiIiaxznyRERERO2pBXPkd+4038YkdkRE1FIM5ImIiIja02XmyKelAS+/LO7LZOKWSeyIiKg1GMi3wcXzajx22yj89GmUratCRERE9uIyQ+sff1ysUJeYCJw5I7LWZ2WJpHZEREQtwUC+DXYnBeF0ihe+WxNq66oQERGRvWgmkD9yBPj1V7E2/NtvA+HhwOjR7IknIqLWYSDfBmdOeQAALuZ7obZOa+PaEBGRLWSmeOKpKdfiZLJ3u+9bWy/DxULXdt8vWVkzc+TffFPc3nEHEBfXgXUiIqJOhYF8G5zNEIG8TqvAmdOXXwBg7f/iMGXoOGSedLN21YiIqIO8+1J/pB72wdNTR7b7vrNOeeD/JkzDk5MnQJLaffdkLU3MkU9LA9auFfcfe6yD60RERJ0KA/k2OHfGGJCfTnNutmxNlQJfvNUL1ZUqfL6S4+eIiDqLkiK14f7pdKd23ffJZB8AgLNLvSEpGjkAC0PrV60CevYEamrE45QUG9SLiIg6DQbyV6CyXIn3XumL4nwXw7ashmH2Tdn6k3Ee/cVGjT4iIrIPFaUqPHrrKKx6rXerXlddZQzWfvoy0GKZvVsDkPyXX6vrlHLQFwDQq19tq19LNnTJ0PqcHGDOHJiMqpg7V2wnIiK6Egzkr8AXb/fAL5/HmGzLyfBusnzZRRXWvtPT8Dg/o/WNOSIisq792/2RleqFHz7qjt++tRyQX6qyXImyC8aLsxnHzP+/nz/ngn/OjcfiWQnIPdPyC7k1VQqkH/MGAAwf1uKXkT24pEc+LQ3Q6UyLaLVAenoH14uIiDoNBvKtpK2X4Y9vI8y2nzkajNoay7/OdxYNxIXzznB2qwMAVFx0Q2GBVatJREStdOaUp+H+52/1atFrck+7mzwuOutjVmbnpiDD/U/eMf/+sCTloA/uHjIB586I/Q8dbJ40jezYJXPkvbzMiygUQPfuHVgnIiLqVBjIt9L+7f6orhQNqrDoKky+/xzc3HUoKfTEyiWxZuW19TIc/NMfAPDQ40UICBDj6lKONT+nnoiIOlZ2mnGKVEmBJ8or6y/7mrMZItDuFlQJACi/4IaSUtNVTHb9Hmy4v2dDHMrLLj/ZfVej4F8mkxAV4t5MabI7l/TIL1pk+rRCAbz3HpecIyKiK8dAvhmWMgQn7wgAAAxMKMSKZS548K4QPPp38Wv865co6CTTsXOZKZ6oq1HCyVmDEQO9EBUlGnBpRz1BRPahslwJLVeQ7PJyLuldP5PZfOK62ho5Mk+IrtaImGp4eIgvjdNpxuHzVRVKnDxk7KXX1Suw9y9X1GuaD+azUo1duIMSiuCicmmmNNmdRnPkjx4FfvlFrBuflARs2QJkZQGzZtm0hkRE5OAYyDfjr6RuZtvOZYmGXkyMDLKGFMJDhojnaiqcUVxsWv7IHjFfMjiyAu5qV0Q0jKrMyWw+OR4RdYxTR7xwX0IiXpk3jMt7dWHaehkKc8R67R6e4oJsdoblkVNlF1V4bnoC7ho0ET99KvKl9OpTj5AQ8fzpdOPrsk55QKeVw9WjFteOFMHd8n/cgPuvuQkXi5oeLp+dLr5rFjxXhHtu823byVHHa9Qj//bb4u4ddwA33ACMHs2eeCIiajsG8s34Y32Q2ba8bNHQCw839qao1YC3T0NPzCVLDx3ZLQL5nn3qIJPJEB4utp+3MI+SiDreZ8t6Q1svx8Htwfjt2wBbV4dsJP+sK7RaORQqLfr0FYH8mXTzC66SBLz8UDyO7jUmtVO71iHxRlfD98KZRr3p+nn33QKrMWSwMbt9ZZkTfvvR8sisynIlLhSKHvi4WBUUMkUbz446XMMcea1MifXrxaaHHrJddYiIqPNhIN+MtINhKL1o/BVp62UoalhyLiLctGEVEtzQgEt3NWxb/1GMYSj+4EHief1V+OJz3pDY/UdkE5kpnpg77nrc0msSDu30N2z/8p2WJTijzudMw/x4b79qREWK//vnTptnKPvjuzCcOuIDuUILLx8RrN00+Tx83TwRFSXKZKcag/ysk2K/IWH1GDDAdF/7NofCEn3w7+pZiwAfV4tlyM419MgfT1Xi/HmR7G7UKBvXiYiIOhUG8s3QaRXYv9c417HwnAu09XLIFVoE+5v2vIc2tMfOpokGWEWpCh+/IdYiHnF9Hob19zIpV1Xqgosll6xFQ0QdIum7cMM0GQAI614CuULCxXwvZGWy97OzePPNIfjHnSNRV3v5r7qsVPG/OyC4DpERovz5bG+zct9+EAcAuG5CAVavUuDV/1bh/jtE4N6/vyhz5lgwahuWfc9u6NWPjJYQEAD07mP8v595OBRVleZ1STsmvi8CQqqhUjBbvUNqCOS37RTv37hxhiXliYiI2gUD+cs4k2bsDdE3/D19a+DqZDp3Uj/3PS/LGwCw9adQaOvl8A6oxIJHvKBWigsCrq6Ah6foiT+TYb6e8LkzrtixIRjbfwlBYS6TGxFZQ+5pNwDAVaMvYuGLpVi8SIa4hmWg/vyj6Wkvedmu2LUpyGw9aLI/RfnO2LYtHJkpPti/+/KrhOgD7vBwnWHk1PlsX1RWGKdRVZQpDd8Dt96shkopR58ernBWif/lkZGAu7uE+joVkveJY+Y2lI+KEPt57VU51n1TCx8fHbQaJfbvNu9xNyTQi7x81nyyUw2B/KFjYjrFmDG2rAwREXVGDOQvIyfDOLTybIZo/HcLqINCbtprp5/7npEcjkduvg6fLRNDdOOvLYerk2lDLbhh6n1Wpmkgn5XqgYfH34DX/zEM/31iKP5x5zWoqb78MkVE1Dr5Z8Xf8tDh9UgY4oVAby8MHy7+1pK3Wh7uvOmbMDwy8Xq8+vgI/PADF3+2d42nTHz7Xi98uKQPtPVN/z/VrwcfFSUuzPoH6KCpVeGndcb9pB4WF3k8fKoR6m++HJxcbuyV//jVwXjt8SEoKRIBfXSksTvWxUmNvn3F1++h3eYXjrIahtbHxHL6lcNqmCN/PFUE8oMG2bAuRETUKTGQv4zGSenSjon7waHmvSQxMYBSKaG+Tomz6Z6oqlBBodIicazSrGxYmGhMbvm6l8kSRL98HgWdzvi4/KILfvnGPHM+EV05nQ4ozGvIdRFq/PscOlTcZqcEQXtJl3vZRRXe/2d/1GvEv8y1a3ui8Jz5iJr2UFcrx9oVcYas5XRlDu4wJi5MOxiKHz+OxW8/WM7+rtMZE5lGRigglwO3TBLv9S8f90ZVhficHN8r/h+HRVcaRlld6qqrxP/w3HQ//LVRXBRy966Bn7fpqAB9wJ+WHGhWF/2Ike4xnObhsBp65M+XKCGTAX362Lg+RETU6ZhHmWSiKEeflE6Go7tFI27AQPNeEm9v4K23dTiVVQ4JIggICtIhJsS84Xj77cCOHTpkHQ3B2vcKcd/8s9DUyfHnBtHom/2PPNRdCMbHHwO/fNILt9+3AzJ2zBO1i+J8F9TXKSCT6xASZOwljYgA5HIJddVOOJdrXGECAL5bFYvaGiV8Aivg6eqEM6ed8ONXfpj9xLl2r9+H/+6LjeuisOn7YKz6Y3u7778rkCTg2D4/s+3HDnhgwh3FZtuL811QV6OETK5DeKj4TIwdC3z1tQ6lhZ54KPE6eHhpUVwggvFevZueWzFqFFBZU4tz5xsmv8uAAYProFaaroLSt6+4zT0ViLo6CU5O4p98/llX1NUoIVdqERVunYtFZH31tfVQAtBABUkCvvyS68YTEVH7Yo/8ZVSWuKK0TIecTHeUFDtDrtBh6EDLjauwUAVuuMYbN17jixuv8UXfWD/IZea/4ogIYPoMcf/PDWLh4b1bAlFVroKzey1GxrshMRGQySUUnfVBbg6jeKL2cq6h59XDuxZuamMvqUoF+DeMos5INean0NbL8PtXkQCAm+8ow01jRC/p0d3my1O2VV2tHBvXRQEAzud4obS03Q/RJZRddELpBfP/05lHLS8veDajIf+JTw3cGz4Trq7ASy/K4aTWobTYFTmZHqiuVEEmkzB0aNP/kxUK4ObxasyZ7it+7vfFVf3MPythYYCrqxjFdfiA8fOWdVIMq/fxrzb5fJLjyMmBYWh9fUN/yUMPNWwnIiJqJ+yRb4abm4TKSmDRzJHQVIss9UERZfB1N19buLVGXivHhx8AeRkBKMyX47d1IlvegBEX4OUSBJkMCA0RX/xHk10RFm4htTERtVpupgjavP1qoVSYJpSMiJChoADISHHH6DE1AIBj+3xRUeYEJxcNxo7yQHmxDoACZ1OCUFUlwdXVclCX/JcfvHzrENO7rMV1+/PXEJPHe7a746ZJFa04OwKAc1liaLqfXxVKS12gaZjClJ/ph6pKwNXNtPzBHeIKTmBYNZQKY06T7t2BDz4AjpwshU7SAgC6dZPQN8byEP3WkMuBIUOAHTuAT/7THx6L0gAAP3wcAwAIDq+BQs7pFY4oPQ2Ihvi86AN5rRZITzcuQUtERNRWDOSbERUl4fhxIOuEcZ76oOE1UMi927xvHx8gIlKH7DNy/PfJwTh1UDQkx4+TQdYwjr5HDxlycoCUA74YfwsDeaLLSfouDCXFaoy6ORf+wTUWy+izkwcGm+e6iIwE9u0Dsk95AygCAGz7WbS84/qVwMvFD56h9fD1rcaFCy44tM8VV19XbbafY3t9sXhWAmQyCXc/nIIpczOhVFlOXFZTpcD7/+qL3X8Emy2TtmdLIAP5K5DbEMgHB1di0SIVUrPL8On7PigrU+DgXhdce73xPZMkYEfDyKirrq4z25ePtxzXXWW+nnx7eOABGXbvlnDmRBCevsfYa69QaTHpFvO6kGPoHm3836IP5BUKcWGIiIiovTCQb8Zjj2lx8Fg5autFg0rtLOGaEW3vjde7OkGO7DPAyf2iERkQVop+3Y3J9Xr3BjZvBjKPBQA4227HJeqMkr4Pw/JnBwMAPn+7Bx5/NRmjJuSbldNnBI+MNJ/nHCM6Q5GRHIaP/6tETY0CW38UuSuuHakzXGQbNOg8Nm+OwC+fxeDq646b7Wftih4AAEmSYd2KPji0qxte/3yvxVwXny3viT++jTTZNn5yGTas90TKrkjodBmQcxJUq5xtuFgTElKByEhvREV1w4kDwJYtwIYvYnDt9cb3LPWwNy4UukCpqsfIqzt2KHtAAPDgLAlffVOHeq240OPkXI/bpl5AfH923TqqsCBjIK+BCnI58N577I0nIqL2xUC+GR4ewIQx7Re4X+r22wGZqhpFpdVQyIGR12mhVhp7fnqJFeyQl+4PTb0OKiVb80SWVFUo8e5L/Q2P6+uUWPrkUMT1/wPB4bUmZXMahtbHxpj/PUVHi9uyIg98+6Hxbz+y5wWMjDeOx77llnRs3hKOo3/G4ETyGfQZbOw1P5flhiN7/AGZhLE3lyDpF2+kHgxEVqYS0bHmowCO7TVfmeKuO+TYvEFCxUU3HD2oxsBhtWZlaqsVqK2Rw9NH09SvxUR1pQLP3HsNInuWYsHrh1v0miuVne6OQzv9cfN9p21yEUK/dntwsHEk0+TJIpA/9lcUCvNOISBY/N62/CCiq+g+F+Hn0fYh861180Q5bp6obkiqCgBqyGQcUu/QNMa/yXoo8euvQGKiDetDRESdEiNDG3J2Bqbe5YK//80XDz/oi/6x/ibPh4WJUQCaWhVSjjWdvfjieTVWLOqP/LOuTZYh6sxOn/REXY0SLu61+PiLckTHaKHTybHxB2+TcmUXVShrSIIWG60y209oKDB7jgYjRl3E8JHi59Z78/Gvl53g6WIMrqKiynFVvJgD++t3poF4+nFxMS4gtALzHvRAVJTYfmi/+d+nTgfkNKxf7u7RsNpFRDm6eboZ1p3e/JPlpHqLZsXjwdFjUHDOqelfTCPH93fD6VQvbP0xAqeOu1z+BQ1Skr1x16DxeHTySJxObfrC5vH9Pli+cCCWPjUY82++Hh/+ux+2/WadIemaOhl++yoCZRfN30PAuJRcSIgxkI+OBrrH6SDp5Pj0HZGTRKsFdv4mRkRdO0oDhdx2y73JZDLDDzm4etOh9YMH27AuRETUaTGQt2MKBdCrp7i/f4d3k+W+XNEDv30VhTcW9uqYihHZmayGANM/pAo+7h4Yc6MIyPZtijApl50mhtW7edXA19NyMDvpZhWef9IHLzwlfmbdE2QSxOsNHCgCrnOnTYNV/Rx8/+A6KBVK9Oolyp3YZ97znp/tJpYaU2jx2n+rMXpMFR55vAoymQwjR4rXHdsVava6sxnuSDnYDXW1Smz/w83seUtOHfE23F/3QXjTBS+xY0MoamuUyDrpjdef7GuxzN6tAXhuxtVI+j4CW38yjh8+tNezxcdpjS/e7okViwbihVlDzZ6TJKAwRwTywcGm+QXuv0985f35Q0/8a/5QvDQnHqUX1FCpNbj2Kl4IpXbSKJCHQgk/85UQiYiI2oyBvJ0bNEg05o/vDm6yzNE9IkBIPRCC3GzLPVREndnpkyKYDg0XveRXXy2256QGoTDf2MuamSICS7/gajgpWtaT3ZTwcDEUuuisj8l2/dD9sFDRw96vn9iedcy8Z11fH9/AKoQEOmPBo64Y2D0QgDEx1sU8L2jqtSav0w8HB4DsjJYF8mlHvQ33DybF4mJxy3qfczON+89N80dOtumMrLKLTvjvgqHQaeXw6lYNudyY1C/vjHWmJm1eLy5EnD7hD+mSHIJ52a6obVgTPiioyuS5QYOAXr100NUrsOePEBz6SyxH13PgRfi5W2f0AHVBDYF8PRQICpYxxwUREVkFv17s3MCB4jZtfyQO7/Exe768RIVzDfNBIcnw/adNB/xEndWZNBEwRkeLqK5bNyA0TNxP3meclpJxQgRr4RFatFVYw/5LC91RVW3c37kzIvANa+j01ue6KMz2RWWladSpD66Dw2rNhnUHBgJyuYR6jRLnco3/qrX1Mmz7ydhLf/aUeU+/Jfokf05qHbQaJb7/NLBFr8vLNr1Q8Pt60+7FL9+JQ02VEj6BFVj+tgYrVwJjJ4gh7YVZLatbazmpjb/vjHTTr7F9W8R5BUeUQaUyTWgokwELF8px74wK3HpPMW69pxh33l+EeQ+pOKSd2k+jNeSD+ZVMRERWwkDezkVHA27uovH/woxrkXfWdK788f2+kCQZZHLRYN3xYxzqNWyQUteS2zDPPDrK+NmPjRH3TzXqiU4/Ju737Gmesb61vL0BZ2cJkiRHVqbopZYkoKAhV0VEuAjM/fwANzcJkk6OzAzTYP10qgiuo2PM66NQwDAkN/u08e9+07fhOJ9nHAZekOnXKFGaZRVlShTni6kEt98tluVL+qontJe5nqHVAoXnxLHGTxJLtu34MdbQC36xyAm/fRUFALhjahl83T0RFCTDvXeJ4P9ivqfJRQ69Y/t88eGSPkhJ9m6+ApbqVC9DUb5xWsSBv0x70vduESMf+g8xXxYQEEt/3nOHO2bd2w2z7u2G6Xf5Idzf/CIp0RUz9MgrERJi47oQEVGnxUDezikUwKtLjI+PHjF9y377Sixb1XfYBXh46FBV6orP3w03G25K1FmVXnBCRakTAAnRkcapJXFx4jYrRfQK11YrkHtaBJi9e7V9wQ6ZDAhqGC1/Jl0ElmUXnVBdqQIgITzEeAxDuQzT5c3ONax3Hh1l+V9xcLC4GHG2Yfi8tl6GL94WiTNG35wHmUxCZakrCgubr6s+M76bZw1uuVkBZ2cJ5Rfckbyv+eXWzue5QFsvh1yhw+2366BSSSjK8cXB3aI+P30Sg3qNHH4h5Rh7rTHju69vw0UOnRyZ6abTfQ786Y9n778GP34ci/88OaD5iluQl+0Gbb3x9/XDe0Pw3ycG479PDsZrjw3F0T3i6kf8cF7QJBtpCOQ1ULFHnoiIrIaBvAOIjJQhPl7cz043DnP967cgHNgeCJlMh4mTNBg7Vryd3/5vIN56oY8tqkrU7gpyXPDZsp6oKLMcfOuHp3v41sDH3dhTrZ9jnp8pAruME17Q6eRwcatFeGD7JDYLDRXB4kcvX4sHRo3B/VeLNabcPGvh6WYMko0BuXHOeL3G2LMcEWF5vrq+N0//ukM7/VBS5AwnFw3uu8fF0GN/aG/zc9F//kysq9dnSAncXdQYMkRs3/pz88Pr046InmpPn2r4+TjjmmvF9lf+Nhp3DJyAbz8Qv+TEW8rh4mQ8X5lMrAAAACnJpgnvDmwPMNwvyvXCmczWXVTJOiXO1c2zFj7dtKi46Irtv4Rh+89h+KshA71vYAX6xDF5HdlIox75IMuLThAREbUZA3kHoW8Un8syNoo3ro0CAIy4vgBX9Q/AlClAj15ibt6uTcHQ6Zrvlj+8uxuWLxyInb8HsQef7NaKRQPw1coeWDxniMXn9b3N4dGVUCmMvb/6NeHLi93x2dvR+G5VLAAgKKLSJOhsC30Oi5pKNS4UGod79xl60SSZXnjDfPnGGe7zz7pBp5VDqdIiJMDy8pIRDUn3z6QE4PAuP/ywJgYA0HfwRfh7eCE+Xlwg+H1dTJN1LMhxMfRS3zxJlNdnxD+0LbrJv/1fPo/CfxaIrPC+AXVQyBW48w4ZlEoJOq0cmloFJEkG74BKJI42v5AwvKFHPOnrHibbTx02Hca+4w/vJuveWHWlAn98F4bPl4sRCdE9K/D+SgVmzKrE+NsvGH4e/Hsh/vuGDi6qli+xR9SuGs2RD2xZKgoiIqJWa/v4UuoQ+kDgfEOGbEkC0o+JoGD0dUoo5Aq4uAD//qcKU6ZIqCp1xZksOaJjzFvpVRVK1NXK8f4r/XE2wwNJ30fg6bd24tqbijvsfIha6tBO0YObdigQeWedEBxeZ/L8iYNiSHfvPqZzsV1dgYAACYWFMny1op9he/ee9WgviYlAXK86FJeJ7OgyGRAYAARfst6U4e8329uwLachG7xnt2o4Ky0HnWENyelzUoLxwkzjGN0xN4l1x2++Gfj5ZyDtQAQyUtMQ29N8XvjRvd0gSTIEhpehX4z4XQ0dKhLplZ33QE4OEHbJPF5JAtavNl4c6DtIzKuPiADWfKxD4UXj+ux+3eTwdjUP5CdMAL7+WsK5tEAcO+iGfkMqoa2XIashL8BV11Zj9w4X7NwQhal/K7psZu9Vr/bB719HAQCcnDWYNLkWajVwx61uAMwz90uSpvkdEllLQ/KJeigREHCZskRERFeIgbyD0PfIF+d6QZIknMtyR2W5E+QKHXrHGXvznJxEY/v0aeDwXk9Ex5Sa7Oe7VbH48n+9UF8ng05nbDkn71fj2ps65FSIWqyqwvRf1NdrgvDoC9mGx9p6GTIbMtH3728+PH3+fBm++7kc9Q0Na2e3etwyqf3+7clkQGyUE2LR/FJ2+r/fC3le0Ek6yGVyZDdk2vcPrINCbr5OPQD06QMMHKxBdq7G0HMeHluOYf3EOYeEAP366XDsmBxP3TUaw64rxLxFx+DjX2vYhz5wDomog0oh7js7i8z+588DWZkqhIWYXhxJPeyNglw3yBU6vPJGEXpGGrPPe3oo4Olx+fXhvb2BqxIk/LVDhreeH4i/L05FUb4L6moVUDrV4+4pOuzbJeFsSjA+WhqLWU9mNLs//QWdgJAqPPpkOfrHcvIx2SdZoznyDOSJiMhaGMg7CP1c2YqLbiguluFow3Biv+AKeLma9kb16SPD6dPAsX3dMPkeYyB//Hg3fLy0r8X9nzvtCeCcVepOdKX066zrHf4zDIAxkM9K9URdrQIqdT26R5oPlx80CBg0yDprmbeG/u+3psIZD910A1zddIb58aHhTaeOV6mAV15SAWicMM507vf//Z8cz72gQXaWCrs3hcA37Dzm/p/xd6SfXx8RYTo6JyREhvPngbPpbsC1xkC+KN8Zbz03CAAQN6AYfaP9IJdd2SysObPlOHhQh/zMbnhuxtWG7f4hlYiJ8MBDD0n43/9k+OHDPvD21eCOB7Mt7ufieTUKc10BSHjxn3UI8+N4ZbJjjebIM5AnIiJr4Rx5B+HpCbi4iIb4g9dOwv8Wi8m5Ud3N158e0JAI+uAfPfDxGz3x5Ts98NnyXli6dGiT+y86y+WXyP6caki2FhxZBplMwvnsbjiXY/y8nzgghooHhpfD3dl+k5up1UC//mKJuYKzHjh90gvlJaIXv1evti2F5+UFLH9ThYRrxFDylIO+Js/rM/VHRppmcddfXMjJNL3Q8cG/+iEnwwNqlzrcNUV7xUE8IJZ6e2KBDAHBtfD2q4K3XxV8Aytx0y1lkMvkGDdOjtvvEEHPF8v7QKOxPGH/+H5xTj4BlQj0MR9GT2RP6iqNc+T9/W1cGSIi6rTYI+9AEhKAzZuNjxVKLUaOMp/vO3w40LtPPVJOqPDtB6aJpjy8qzH377X4zyveAIAe/cpx6pgHLuR5oV6rhVJhOXs2UUeTJGDfVtGd1bt/LVyUHsjMAP7c5I0pM0U+h2P7xMiU7j01bQo4O8I/X5Ej7XQ1snJqIUkieHf31GFYf+8271uhAO65W4VdfwG5qYHQ1OugUsqhqZOhKE/0/EdFmv5t6+ftF5zxRuNRDqeOiPrMfKQYw3u3PeX2iBEyjBhxaTI/YzA+/X4lfv5ZQl2tCumnlOjd13yEwuFdIudAdFw1VArL0xCI7EVpcT1cAWihhLe3rWtDRESdFQN5B/L44zI8OLsWGq0I3pVKwMPFfIipUgn88xUlPl9Xg8zsGkCSIJNJGNT7HBJGByLAyx//aSg7eGgd0k9I0NSqkJ8nNyTXIrKW83nO8PSpg9q5+Z7obT+F4vg+P8jkOlw7UocgTxkyM4BNa3vi7gd2QiYTc7kBoH9/+192QS4Hesa6oGesdbKpR0QAamcJtTVOOHrQFb361CMzxRM6nRxKp3oE+5sG0/pAvvict2FbRZkSxQWifv17u0Ams/5a7HI5EBEOpKcDKUfc0LtvmVkZ/ciMvv3s/30mKi2uRzAASaVCB/wJERFRF8VA3sF4uqkBWF6qqjGVCnjgPmcAYt6wJGkgSRmQyXpCJgOeeUbCtj0lGD9Ohc2/6pNeOSEsjJmeyXrSjnrhqSkjMeCac3j5g4PNll33bhwA4Jqb8jG4ZyB6hALffCOh8Ew3vDBrGFzdIJZ8k0no26v5ZHNdgUIBdI8Fjh8HXpw+1uQ5b78auKhMpx7oh9aXFHiirk4HFWQ4fVIk0XPzrEGAT8ct39a9uwzp6UDaEV9gqmkgr9UCOZmiF75XD35lkf0rvSBGlchU/LwSEZH12PdYVLKaq6+WYeE/fODr5omQENFlkJ3GIavUeunHPLF3a8syOn2/OhY6nQyH/gxF/rmmp3HkZLoj97QHZHId7rnTGQq5Ap6ewISJ4vkjO4Oxe5PIWu4XXAF/L352AWDsWBnkctNea1ePWowed9Fs6kG3boBaLdaE37pBDF1PP+YNAAgIrYJaefkLhu2lp1gaHmdS/Myeyz3tDk2dAkpVPaIjzBMaEtmb8mJxQVzuxECeiIish98yhNBQ4PBhfXbri7auDjkQnQ5YcOd1AIBlP2xCTM+aJstWVSqQkmxMxPbb936Y8UiBxbLbfhLrtYXFliLUz8uw/f77ZPD1r8H5i2LddrlcwvB4LVQK22emtwc33ABcc60ONfVi+TkZALWTAmpluFlZuRy4eRLw7TfAykUJ+MJDg8oqkR0/KqbpTPrWECcGX6DgtB/q6yUolcbxyPqLC92CquDqxAs2ZP/KS8Tfj4KBPBERWRG/ZQgREeL20qRXRJejXwsdAFJOKBHT03K548d98dzkkSbbtnzbA9PmFEKpMu1BrqpQ4revxIfyqmtNV2VQqYDJNxunjJA5tZMCaqeWZfC/d6oMO3dpkZerwMWLxt/zkKFty6TfWqGhgEolcnWczlAhrqcxiac+D0J4tP0nNCQCxBx5AFA4qy5TkoiI6MoxkCdD0quiHO/Llj2ypxtUTlr0Hlxi1TqR/autViB5h3FtpewMNwAVFsvu2RNsuB8SXYqSQg9cOOeNL98Lw/3zz5qUXfPf3igpdoa7dzUSb2TAbk0qFfDWMgUyzpTBWXkAZXUD4OEhR2RQtw6th0Ih/g9lZgInj7girqdxnnxmihiRERfHRHfkGIrzRSCvdmcTi4iIrIffMmRIelV63gNV1fVwdTH9WJRecMJ7r/RDSGQlvloplrNbl/wTXDouFxbZmYoyJf4+abQhwzkA5GZ4AbA8VD4jwxsAMDihBLP/Bhw/KMOKFcCvn8fhvkeyDdnRdTpg+89iWP2UB4oR4MllFKxNrQZ6x7lAksogk3lCJrNNL2L37jIRyB/ywaS7RCAvScZRHz26szeeHMPFQhHIOzOQJyIiK2LLiODrCzipJUg6Oc6eMW3EV5Qp8cjE0dixIdQQxAPAsUPMEt6Vfb68p0kQDwCF2b4Wy+p0QGam6FW9dXI9wvy9ce21InCvvOiGklLjMO6cTHdUVaigUGoxKt7L4v6oc9InvMtqlPCuINcF1ZUqyOQ6xEbxfw7ZP0kCShqG1rt6MJAnIiLrYSBPkMmAwIak42cyTIcyb1gbhbKL5tmrjx1kkNVVVZQpsXFtlNn24lxvaHXmc6vzst1QXS2C89hI8flycwPc3cVQ6ezTxgDtxH5xMSAgrAJerm5WqD3ZK0PCu0w/aDTis5FxXPyf8Q2oggeHAJEDKC1VQ1cnkt25enGOPBERWQ8DeQIAwxJ0+gzRgOhZ+G1dpMXyqQf9LW5vTGqY0lpVoTTcJ8eXne4BrVYOV49afPx5Nd7/qBJyuQRNjQp552Rm5Y1Zxyvh7mwMxgIDG/aXabx4dHSv6I2N7VnHxGZdTHg44OYmoa7GCT+vEx+OU0e8AQAhEaZJD4nsVX6+K5QQPfJcfo6IiKyJLWUCAAwdKm53b4iDvlN116YgFOa6QulUj5vGmy4rlpMa2OS+8s+64vkZV+H2/hPx6OSRuHdEIlYs7mOtqlMHO5su5iz7BtTAx8MFQd3cENAwouPofvNl4E4cFL3s4VGmwVhwsAj6xbKH4sLPyWQfAEC/frzy09UoFMBdd4n7a/49HHcPGY8f1sQCALp379gs+kRXqqDADSqIdeShZCBPRETWw0CeAACjRwNqtYSSfC8s+tswLHl0KN55YSAAYOi15zF0sOn81LIid5zNtvzxWbuiB47s8Ye2Xo6sk97Q6eT4/atYpB7lUOnO4MwpEXgHhWgM2wYPFkH53s3BZuVTDooM6H37ma5Nrl8t4dxpTwBA5gkvnM9zhVyhxaB+HJLaFU2aJENgkBaSTo6aKiV0WjnkCh0GD+GFHXIMmZlehh55BvJERGRN/JYhAICzM3DddcDvvwNHdhqDMS+/Ssx+0AVeajmiY7Rw9ilBXYkPMjLk+OsPb9zz4AWzfenntV5q9RuxeG3NEaudA3WMnEwRyIdHGIOrq64CNmwATu6JgCSloSEJPaorFTib4Q4AGNDPdNi9PpDPz/TDyeTz+OWLKABATJ8SBPn6WPckyC6pVMD/ViiQfa4K9TpxocjdEwjy6djl8IiuhE4H/PVXCPrqA3kVL0gSEZH1MJAngwcflCEwtBKlVWIYvVwOXHMNEOApGtHLlylQr/XCN1/LkZEB7N8SahbIa+pkyDktArdXlxVDKbmhukaHFxa6IuNwMDT1h6BSciCIIzuXJUZWREYYA/N+/QAnJwmVpa44fliNfoNqAQCnjvhAp5PD378KEcGmIzL0yx4WnumGp6dea9g+arSG8+O7MJUKiI10tXU1iFpt924Ziopc4e5UB9SBPfJERGRV/JYhA1dX4K7b3AA0PQReqVAiPh744gsg83AoamqOwrlRovuzGR7Q1suhUtcjMswFbk7O0GrF8nZ11U44leKEvv3rrX8yZBWaOhmK8sUbHhlh/PehUgEDBgD79wObfwxAv0FnAQB7t4jJ8716XYBaaZpXITISGDK0HmmZ9UBD575fSCWuu5pTMIjI8ezcKS5u9ojWAKlgIE9ERFbFbxlqtagosXRYRYUKJ46qMGS4ca50esOwer/gSrioxBBshQKI6w4cPw4k7/JC3/7FZvtMP+aFvGxXXDs+zzAsm+xP/lk36HRyKFVahPibLlU4erQM+/cD+5NiIL1wFjVVCiR9FwEAuPrqcwBMA3mFAnhxsRKS1DgbuRoyfgCIyAGdPy9u/VwrxR03XpQkIiLr4fhVajWZDIiJEfePHfQ0eW7fFhGsRUSZLh/Wv78Izo7vCzDbX221Ai/MvAr/WTAM6z8Js1KtqT3o57t7+1fDWaU2eW7ECEClklBS4Inb+k3E1OHjUFWhgodPNUaMyGtynzKZzOSHiMgRnT8v/n95KhjIExGR9TGQpyvSs6dosKQdNiah2vZTCPYkBQOQkHCtaYbyvn3Fbe4p8/XnN/8QispykRX/49cHID9HbVaG7MOZU+LCjX9gnVnQrU+YCAA6rRw6nfj3Mu6281BwCXAi6uSKisSth7whkHd3t11liIio0+PQeroivXuL27MnAwGcQnWlAh/8ux8AIGFsHkYNNe15jxAjrFFa6IHKKi3cXI2R3U+fxBju67QK/PajJ2Y8fN6q9acro++RDwu3vK733/8uw9331KCmXky3cHKS4O/j12H1IyKyFf3QejeJPfJERGR97JGnKxIXJ24vnPPG7DHX46HEG1B2UQ1372rMmekGpcL0GpG3N+DsLEGS5MjKNC7Jk5PphpxMD8jkOkycXAUAOLjN8YbXa7WXL9MZ5DasSNB46bnGZDIgKMAZUSEeiArxQIifJ5RyLsFERJ2ffmi9i65CbGAgT0REVsRAnq6IlxcQ3tArW5DjjpIikfhs8r1F6OZuvo68TAYENyw3lpVuTJK283exZn1IdBnGjxVD6s8cC0ZFuePMlT6b4Y6pw8bjuQficbHIydbVabMD2/wx49qxePelvqiuNI6ckCQgL1ssCxYZwbHyRESN6Xvk1fUcWk9ERNbHofV0xV5/XY4jJ8tRrxPLybl7SOgfF9xk+fAwGU5nAlmpngBE7/uuTaL80BE1CA/zhp+fhKIiBX7/wRe332ee3d4e/fVbMGqqlTi6OwBL/tEPr3960NZVapOv3ovDxSJnbPgyBgd2+OGVVfsQHFGFkiI1aqpUACREhLKXnYhIr7ISqK4WF6BVdRxaT0RE1sceebpibm5AwlAPjBzug5HDfTC4l6/ZkPrG9PPkM44EIO2oF379IhIZx70BSBh5jQoyGTBunGgIfbeyPzR1TX88JUn8WNMr84bjwetvQHlJ80HryWQfw/2MIwGo0zjuOPuqCiVOHTaeT+FZT7z2hMhUuH+7yHvg6VsDT1dni68nIuqK9L3xKpUWiioG8kREZH0M5KnDREWJ2/QDkXjirlFY+fIAAMCI6/MRGyqG4996K+DhoUNZkQc2b/C0uJ+ifGdMi0/Ef58aZLW6ph31wr4tQSjKc8NvP1quByAuJqQf8zY81tSqcOa04w50ObjDH1qtHB4+1Xjn3VrI5RIyjwbhj/UBWL86FgAw9NoSqBTskSci0tMH8i4u9dBVcGg9ERFZHwN56jD9+wPde2jg5llr+OkzvAAPzzEmx1OrgauuEh/LI/s8LO5nx4YQVJQ5YceGCJw86WOxTFv92CiT/t7NTU8XKMx1QdlFNWRyHYKCxRSDtBOuLTrG2Qx3LF84EMUFLevd1umAsotOOHXEGycOtv95SxKw7adQAEDP/uWICFXj6qvFsIe3nonH2QwPyBVa3DqRQTwRUWOffSZuy8rUqClmjzwREVmf43YdksNxcQGW/lcFnaSD1DAuXibzh1xmej2pRw9g0yYg+6Q/gLNm+0k9ZAxiP/qoH2pWK+DjV4OXVu2F7DI58k4c9MErc0dg1jNHMOb2PItldDpg96Ygw+P0g2GoqTkGZwvxdmrDMHSfwEr06OGK/Dzg1BFvTJhc2XxFAHz0eh/s3xaI4otavLzy2GXLPzXlWqQdNZ778+//iRGjSizWP/e0O4IjKiFXSFj7Tg/EDSjB8NGFTe776/e749OlvQ2Px4wV78/06XKcOVuH0nItZDIJw0cVIyoo9LJ1JSLqKnJygLffFvdl0MGtIQfMuVI3hNiwXkRE1LmxR546nFwmh0KugEKuMAviAePSdvmZ/tDqzNcrP3XE23A/NdUXZ0554dDOQOTlXv7j/PrjQ1FZ5oS3nh3WZJkLhc6orVFCJpPg7q5DfZ0Kf26yPLw+5aAvACA0shI9e4hM7pu/GILDu7s1W496jQzH9okyh7dH4tzZ5q+plV1UmQTxAPDxm3FmeQJOp3pg5nVj8cjE6/Gfp/rhwLYArP1fT7wyNx4Xi5s+xrfvdzfc9w8tw9C+3gCAoCBgxdtO+GyNCz79yBWPzgy3+J4REXVVaWnGnC2uDUE8AKTnsUeeiIishy1ysjsREYBCIaG2ygnZWabLnJUUO+F8nhi6Pu5m017vo8lND1E/vLsbHr9tJC4Uuhi26XSWs+WdyxKNL3fvGlx/gyiz4csYi2VTGhLd9e6tQ69exu3//vuQJvcPiJ78mioRWEs6Ob58P6zJsoBx/XYX9zosf7ccCqWEsylBOLjLdA7m719F4OJ58XvYtTEKP34WZXjus/+FW9y3pk6GqgrjcPmJt5dDrVQ3Wx8iIhLi4gB5Q2vKDeJ7SQcZYvq6NPMqIiKitmEgT3ZHqQTCGuLalCPG+ebVlQq8NDseAODlV4kHpsswbtxpw/P63nFL/jlvBDJTvE22ncu1PA4/N0sExz5+tbh5oriQkJ4chtxs07nhmjo5zpwSPfX9+ysQFwfMnqMRdS13xtmzTY/z37slEADg4V0LANj1c09UlDf953g2U9TJN6AKUSHuGDVSXCT4dnWkSbn0Y6a99of/CjTc//OH7hYvLuQ0XCRQqevxzgcluOWGQLMyRERkWVgY8P774gK0PpDXql0RFsEmFhERWQ+/ZcguRUWJIDjzpDHhXdL34cg44Q2lqh633FMMF7UKc+cewdy5Yrm308f9Le6rpkqB2mrzYeUnj1nuLTmbIQLbgKB6BAcDMbE6QJJhz1+mPf6ZKZ7Q1svh5KJBTJjoxZ90swohISJYTj/RdG+Mfsm6xFtKERikQ121E374wnL9ARguGASF1EMmk2HyZPGne2JnFM7niwsMOh2QdUr8vuY9fhEyuWnQXlPhjJwc84sLp1PEvrsFViEswLPZJQSJiMjcrFlAWlo9nnlkOwBA5cVh9UREZF0M5Mku6Xvk8057GbZlpYqAc9jIi7hzrHGYeI8eYh79uXR/1GvN59QfaWK+euoRL4vbz50WDbCwcBEIx0SLP5Osk6blTxwQIwCCwivgpjaOHNBfhEg7bnn/AJCT4dFQdzkmThD735PUdFok/cWF8AhRp+hooHt3HXQ6OT77n/hlnctyQ221EgqlFldfpcLo60RZZ7c6BIeIix0nj5pn1M847g0ACAmv4/x3IqIrFBYG9AovEA+49BwREVkZW+1kl8Ib4vTzOcah4voh4JGRgKxRevrISEClklBbpUbGKdPh7xnHPfH+v/qZbHN2FcvEZRwJsHjs/LMNgXzDxYToaHGbm2E6bF0fyMf2MA2AY8Vy68hKsbxE3MUiJ5SXOgGQEBvlhMGDG87vZCA0dRZfgrwzok4REcbznjZNHHP7d73x7/lDsXzhIABAt6BKuDu7YMYMOWJ71GH0hELExoiypyxcvMg8KS6QxMSaXwQhIqKWU9aK6VJceo6IiKyNgTzZJX0QfTHPy5C53hDMhpsOD1cqjcHzgV3G7PKSBPz3ySEozHWDk4sGz/47HwtfqMazL4iGVtbRUFRXmx63XiNDYZ4YEh8eIoaY6wP5wjOmPfvpx7wBAP37mf4Z6euSf9rP4rnpRxZ4+NbA280F4eGAq6uE+joVThwzTzKXk+mO8+dcG87dmPxvyBCge5wO2noFdv8RgtTD4sJCTI8aKOQK+PoCb/7XCQ/fH4a4OPE7y0oxPQdJAk6niOA+rjv/HRARtYWipkbcYSBPRERWxsmwZJeCggCZTGSuP18I+HgpDNnYI8PNP7b9+8tw8iRwfE8g8OBFAMChnX7IPe0BhUqLf71RjB6hgZDJZJAkwNtbh5ISJfbucMN1Y43Z708c8EV9nQJqFw3Cgp0AGEcHlBa5o6xcC08PBS4WOaG4wAWAhN49TeujD/wv5HmhrEyCp6fphYfMEyJwDgyphkohgu+ePYHkZODgTm8MSMw3lNXUyfHPh4dDp5MhJKYEEUHGofEyGfDC83L8trkClQ29QGq1hBtGm45KAIxL+uWlB0CSxGsBIPe0G6oqVJArtOjVnZnqiYjaQqkP5Dm0noiIrIyBPNklJyfAxwe4cAE4k6lGta/oJXdy1iDA13yZuYEDga+/BjIPh6KkOBMAsPq1vgCAAfFFiAsNMAzHl8mAIUPk2LwZ2LkpENeNzTTs56/fggEAMX1L4O4setS9vAA3dwmVFTK890p/dOsmoShf1MfLrxoB3qYNNh8fwNtbQkmJDCeOqHHVtabj5TMaesDDo7SGbQMGyJCcDJxMDgAaBfLffhCLc1nuULvWYcFTdXBWeZsd65473AE032iMjRUZlcsvuCHtpBN69BZ10i+f5x9aCU9X9iAREbUFe+SJiKijMJAnuxUUJMOFC8A7T4+ESimGfXv71cBJad5A6tkTcHKSUFniiunXJBq2OzlrcNedMrMkbsOGAZs3A6ePBQAQgbwkAXu3BAEAEhJ0pvPwI4ATJ4A/f4w12U9EbCVUCvNs87GxMhw4ABw/6IWrrj1v8lxOQ+K6mCjjth49xG1ehnE4fkWpCl+/L7rSb55SgB6hlteBbwkXF6Bff+DwISDpJ3/06J0LADixXwy1j+peC4Xcs5k9EBHR5Sg4R56IiDoIA3myW336iOC5tMjYIIqKq4Jc5mFWVq0Gnv4/Ce+u1KD4vBgS7+Jei789Voi+0WFm5aOixG1xrjc09VqolAoU5LqgON8FMrkOCcOcTMrPmyfDdz+Xo7pWA0kSQb/KScItt1que8+ewIEDQPoRPwDGQF6SjMn0IiOM8931w/FLz3ugokIJD2hxeHc3aGoV8PStwp0TLWfeb41RI2U4fAjYvLYvTu2JgSQZl7Xr19d8fXkiImqFnBwE7dkj7gdYTqZKRETUXhjIk92aNg3oN6gapZViqKJSJaF/76Z7OUYMl2PEcCdUVNdCK2mhVACuTmEmPet6QUFiqLmmVoVzuQpERhqT1/kGVMHPy7R3OjIS+Mcj5hcQmtK7t7jNSQ0EkGLYXlKkRk2VEpBJCA8z/vm5uwO+vhIuXJAhK8sL/QdfwME/RUOwe+9KuDk1vcZ8SyUkAO+/35Dd/7hxPnxEjwsYmWA+XYGIqKOtWLEC//nPf5Cfn4+BAwfi7bffxogRI5os//XXX+OFF15AVlYW4uLi8Nprr2HChAkdWOMG774L5SOPwF9quCjq7d3xdSAioi6FgTzZLYUCGDLABYBLq17n7nL5pG1KpegwycsDMk85IzKyBqmHvQEAIZE1UMjblqhIn7m+9LwHLlzQwddXDO3PbVhCz92rBp4upucVFSWmEmRmeqE/LuDYXtELP3Bw+ywL5+4OvLlMwrFTJdBBNDZ9fHQY0s8DaiUT3RGRba1btw4LFizAypUrER8fj2XLliExMRGpqakIsNDDvXPnTkydOhVLlizBzTffjC+++AKTJ0/GwYMH0a9fPwtHsJKcHOCRRyCTGo1seuUVYNYs4xIsRERE7YzrTVGXFRYmeupPxAyopgAAJGNJREFUp4pe/vSj3gCAHj3aPszc3R3w9BL7OZ1hHKZ/tmF+vK9/LVQK0+zy+uB/zZq+uHPwRORli7KDB5pnob9SYaFyjLveBxOu98WE632RMMiPQTwR2YWlS5di9uzZmDlzJvr06YOVK1fC1dUVq1evtlh++fLlGDduHJ566in07t0br7zyCoYMGYJ33nmnYyuelibmTTWm1QLp6R1bDyIi6lLYI09dVkQEsG8fcGh7JH4LcMXpkyKbfI8486H4VyIkGCgrBbLSXDB0eDkA4EyaGJ4fGFJvVj4+Hvj2Wwk6nRy6hkT34XEXEerX8iH9RESOqK6uDgcOHMDChQsN2+RyOcaMGYNdu3ZZfM2uXbuwYMECk22JiYlYv369xfK1tbWo1SejA1BWVgYA0Gg00Gg0V175qCgo5XLIdMbRU5JCgfrISKAt++1g+t9Bm34XNsT62xbrb3uOfg6sv+l+WoKBPHVZMTHiNutIKFYcCQUAyOQ6xMU6NfOqlgsLE2vbn0nzBCAC+bMZIigPjzDv9e/RA/jkk1pUVm5HpWY4ZDIFAvydzHruiYg6m6KiImi1WgQGBppsDwwMxMmTJy2+Jj8/32L5/Px8i+WXLFmCl156yWz777//DldX1yusuRAxbx4Gvvsu5DoddHI5Ds+di+wjR4AjR9q0X1vYtGmTravQJqy/bbH+tufo59DV619VVdXisgzkqcuKjwdGjq5FTn4t0DBnvN/QCvi4BbXL/iMjxW1epg+AXNRWK5B6SKzb3rOn5dd4eCjg7l4NmcwdMhkDeCKi9rJw4UKTHvyysjKEh4fjpptugqdnG5ffnDABtY89hgPr1mHolCnoFxWFDpyl3y40Gg02bdqEsWPHQqVyvO8f1t+2WH/bc/RzYP0F/WixlmAgT12WkxPw1AI1gMZzxL3abf8REeL2/FkRvO/f7o+6WgXcvGowsBfXGCYi0vPz84NCoUBBQYHJ9oKCAgQFWb64GhQU1KryarUaarV5ThCVStU+jcaoKBT37w9lVJRDNkL12u33YSOsv22x/rbn6OfQ1evfmtcy2R2RleiTFV/I88KsG27A288NAgD0HVIKV6e2DeMkIupMnJycMHToUCQlJRm26XQ6JCUlISEhweJrEhISTMoDYkhjU+WJiIg6E/bIE1lJt26AbzcdLhTLcf5cQw+8TMKYMbatFxGRPVqwYAFmzJiBYcOGYcSIEVi2bBkqKysxc+ZMAMD06dMRGhqKJUuWAAAee+wxXHfddXjjjTcwceJErF27Fvv378f7779vy9MgIiLqEAzkiaxELgfeeVuOY2ll0Om0AAAvHx16Rnazcc2IiOzPlClTcP78eSxatAj5+fkYNGgQNm7caEhol52dDbncOJDw6quvxhdffIHnn38ezz77LOLi4rB+/fqOXUOeiIjIRhjIE1mRuztw1eA2JlEiIuoi5s+fj/nz51t8buvWrWbb7rrrLtx1111WrhUREZH94Rx5IiIiIiIiIgfCQJ6IiIiIiIjIgTCQJyIiIiIiInIgDOSJiIiIiIiIHAgDeSIiIiIiIiIHwkCeiIiIiIiIyIEwkCciIiIiIiJyIAzkiYiIiIiIiBwIA3kiIiIiIiIiB8JAnoiIiIiIiMiBMJAnIiIiIiIiciAM5ImIiIiIiIgcCAN5IiIiIiIiIgfCQJ6IiIiIiIjIgTCQJyIiIiIiInIgdhHIr1ixAlFRUXB2dkZ8fDz27t3bZFmNRoOXX34ZsbGxcHZ2xsCBA7Fx48Y27ZOIiIiIiIjIUdg8kF+3bh0WLFiAxYsX4+DBgxg4cCASExNRWFhosfzzzz+P9957D2+//TZOnDiBuXPn4rbbbkNycvIV75OIiIiIiIjIUdg8kF+6dClmz56NmTNnok+fPli5ciVcXV2xevVqi+U//fRTPPvss5gwYQJiYmIwb948TJgwAW+88cYV75OIiIiIiIjIUShtefC6ujocOHAACxcuNGyTy+UYM2YMdu3aZfE1tbW1cHZ2Ntnm4uKCHTt2tGmftbW1hselpaUAgMrKC1d2YnZIkjQAqgAUQyZT2bo67YLn5Bg62zl1tvMBeE72rrYWKC0FJEl8J0mSZOMadQ7632NZWVm77E+j0aCqqgplZWVQqRzvM8f62xbrb1uOXn/A8c+B9Rf030kt+a63aSBfVFQErVaLwMBAk+2BgYE4efKkxdckJiZi6dKlGDVqFGJjY5GUlITvvvsOWq32ive5ZMkSvPTSS2bb//a3HldyWkRERO3queeM94uLi+Hl5WW7ynQS5eXlAIDw8HAb14SIiMhUeXn5Zb/rbRrIX4nly5dj9uzZ6NWrF2QyGWJjYzFz5sw2DZtfuHAhFixYYHhcUlKCyMhIZGdnd5rGUllZGcLDw3H27Fl4enraujrtgufkGDrbOXW28wF4To6itLQUERER8PX1tXVVOoWQkBCcPXsWHh4ekMlkbd6fo3/mWH/bYv1ty9HrDzj+ObD+giRJKC8vR0hIyGXL2jSQ9/Pzg0KhQEFBgcn2goICBAUFWXyNv78/1q9fj5qaGhQXFyMkJATPPPMMYmJirnifarUaarXabLuXl5dDfpCa4+npyXNyADwn+9fZzgfgOTkKudzm6W06BblcjrCwsHbfr6N/5lh/22L9bcvR6w84/jmw/mhxR7JNWwNOTk4YOnQokpKSDNt0Oh2SkpKQkJDQ7GudnZ0RGhqK+vp6fPvtt7j11lvbvE8iIiIiIiIie2fzofULFizAjBkzMGzYMIwYMQLLli1DZWUlZs6cCQCYPn06QkNDsWTJEgDAnj17kJubi0GDBiE3NxcvvvgidDodnn766Rbvk4iIiIiIiMhR2TyQnzJlCs6fP49FixYhPz8fgwYNwsaNGw3J6rKzs02GEdbU1OD5559HZmYm3N3dMWHCBHz66afw9vZu8T4vR61WY/HixRaH2zsqnpNj4DnZv852PgDPyVF0xnPqTBz9/WH9bYv1ty1Hrz/g+OfA+reeTOI6NkREREREREQOgxlziIiIiIiIiBwIA3kiIiIiIiIiB8JAnoiIiIiIiMiBMJAnIiIiIiIiciBdKpDfvn07Jk2ahJCQEMhkMqxfv97keUmSsGjRIgQHB8PFxQVjxoxBWlqaSZkLFy5g2rRp8PT0hLe3N2bNmoWKiooOPAujy53PAw88AJlMZvIzbtw4kzL2dD4AsGTJEgwfPhweHh4ICAjA5MmTkZqaalKmpqYGjzzyCLp16wZ3d3fccccdKCgoMCmTnZ2NiRMnwtXVFQEBAXjqqadQX1/fkadi0JJzGj16tNl7NXfuXJMy9nJO7777LgYMGABPT094enoiISEBGzZsMDzvaO8PcPlzcqT3pymvvvoqZDIZHn/8ccM2R3yvGrN0To72Xr344otm9e3Vq5fheUd/j7qKFStWICoqCs7OzoiPj8fevXttXSWL2uPz1pEcvd3m6O00R2+TdYb2l6O3uTpT+8ou21FSF/Lrr79Kzz33nPTdd99JAKTvv//e5PlXX31V8vLyktavXy8dPnxYuuWWW6To6GipurraUGbcuHHSwIEDpd27d0t//vmn1L17d2nq1KkdfCbC5c5nxowZ0rhx46S8vDzDz4ULF0zK2NP5SJIkJSYmSh999JF07Ngx6dChQ9KECROkiIgIqaKiwlBm7ty5Unh4uJSUlCTt379fuuqqq6Srr77a8Hx9fb3Ur18/acyYMVJycrL066+/Sn5+ftLChQttcUotOqfrrrtOmj17tsl7VVpaanjens7pxx9/lH755Rfp1KlTUmpqqvTss89KKpVKOnbsmCRJjvf+SNLlz8mR3h9L9u7dK0VFRUkDBgyQHnvsMcN2R3yv9Jo6J0d7rxYvXiz17dvXpL7nz583PO/I71FXsXbtWsnJyUlavXq1dPz4cWn27NmSt7e3VFBQYOuqmWnr562jOXq7zdHbaY7eJusM7S9Hb3N1lvaVvbajulQg39il/1B1Op0UFBQk/ec//zFsKykpkdRqtfTll19KkiRJJ06ckABI+/btM5TZsGGDJJPJpNzc3A6ruyVNfUHceuutTb7Gns9Hr7CwUAIgbdu2TZIk8Z6oVCrp66+/NpRJSUmRAEi7du2SJEl8ccrlcik/P99Q5t1335U8PT2l2trajj0BCy49J0kS/8ga/2O4lL2fk4+Pj/Thhx92ivdHT39OkuTY7095ebkUFxcnbdq0yeQ8HPm9auqcJMnx3qvFixdLAwcOtPicI79HXcmIESOkRx55xPBYq9VKISEh0pIlS2xYK8va+nmzJUdvt3WGdpqjt8k6S/vL0dtcjta+sud2VJcaWt+c06dPIz8/H2PGjDFs8/LyQnx8PHbt2gUA2LVrF7y9vTFs2DBDmTFjxkAul2PPnj0dXueW2Lp1KwICAtCzZ0/MmzcPxcXFhucc4XxKS0sBAL6+vgCAAwcOQKPRmLxPvXr1QkREhMn71L9/fwQGBhrKJCYmoqysDMePH+/A2lt26Tnpff755/Dz80O/fv2wcOFCVFVVGZ6z13PSarVYu3YtKisrkZCQ0Cnen0vPSc8R3x8AeOSRRzBx4kST9wRw7L+lps5Jz9Heq7S0NISEhCAmJgbTpk1DdnY2AMd+j7qKuro6HDhwwOQ9ksvlGDNmjOE9sjdt+bzZk87SbnOkdpqjt8kcvf3l6G0uR21f2XM7StnmPXQS+fn5AGDyi9Y/1j+Xn5+PgIAAk+eVSiV8fX0NZezJuHHjcPvttyM6OhoZGRl49tlnMX78eOzatQsKhcLuz0en0+Hxxx/HNddcg379+gEQ74GTkxO8vb1Nyl76Pll6H/XP2ZKlcwKAe++9F5GRkQgJCcGRI0fwf//3f0hNTcV3330HwP7O6ejRo0hISEBNTQ3c3d3x/fffo0+fPjh06JDDvj9NnRPgeO+P3tq1a3Hw4EHs27fP7DlH/Vtq7pwAx3uv4uPjsWbNGvTs2RN5eXl46aWXMHLkSBw7dsxh36OupKioCFqt1uJ7cPLkSRvVqmlt/bzZk87QbnOkdpqjt8kcuf3l6G0uR25f2Xs7ioF8J3bPPfcY7vfv3x8DBgxAbGwstm7dihtvvNGGNWuZRx55BMeOHcOOHTtsXZV209Q5zZkzx3C/f//+CA4Oxo033oiMjAzExsZ2dDUvq2fPnjh06BBKS0vxzTffYMaMGdi2bZutq9UmTZ1Tnz59HO79AYCzZ8/isccew6ZNm+Ds7Gzr6rSLlpyTo71X48ePN9wfMGAA4uPjERkZia+++gouLi42rBl1Rvy82RdHaqc5epvMkdtfjt7mctT2lSO0ozi0vkFQUBAAmGUaLCgoMDwXFBSEwsJCk+fr6+tx4cIFQxl7FhMTAz8/P6SnpwOw7/OZP38+fv75Z2zZsgVhYWGG7UFBQairq0NJSYlJ+UvfJ0vvo/45W2nqnCyJj48HAJP3yp7OycnJCd27d8fQoUOxZMkSDBw4EMuXL3fo96epc7LE3t8fQAz5KiwsxJAhQ6BUKqFUKrFt2za89dZbUCqVCAwMdLj36nLnpNVqzV7jCO9VY97e3ujRowfS09Md+u+pq/Dz84NCoWi27WDPWvt5syedsd1mr+00R2+TOXr7y9HbXI7avnKEdhQD+QbR0dEICgpCUlKSYVtZWRn27NljmMeRkJCAkpISHDhwwFBm8+bN0Ol0hg+ePcvJyUFxcTGCg4MB2Of5SJKE+fPn4/vvv8fmzZsRHR1t8vzQoUOhUqlM3qfU1FRkZ2ebvE9Hjx41+fLbtGkTPD09DUN5OtLlzsmSQ4cOAYDJe2VP53QpnU6H2tpah3x/mqI/J0sc4f258cYbcfToURw6dMjwM2zYMEybNs1w39Heq8udk0KhMHuNI7xXjVVUVCAjIwPBwcGd6u+ps3JycsLQoUNN3iOdToekpCSTOaD2qrWfN3vSGdtt9tZOc/Q2WWdtfzl6m8tR2lcO0Y5qc7o8B1JeXi4lJydLycnJEgBp6dKlUnJysnTmzBlJksQyJt7e3tIPP/wgHTlyRLr11lstLmMyePBgac+ePdKOHTukuLg4my3X1tz5lJeXS08++aS0a9cu6fTp09Iff/whDRkyRIqLi5Nqamrs8nwkSZLmzZsneXl5SVu3bjVZiqKqqspQZu7cuVJERIS0efNmaf/+/VJCQoKUkJBgeF6/1MNNN90kHTp0SNq4caPk7+9vs+WYLndO6enp0ssvvyzt379fOn36tPTDDz9IMTEx0qhRo+zynJ555hlp27Zt0unTp6UjR45IzzzzjCSTyaTff/9dkiTHe38kqflzcrT3pzmXZod1xPfqUo3PyRHfqyeeeELaunWrdPr0aemvv/6SxowZI/n5+UmFhYWSJHWO96izW7t2raRWq6U1a9ZIJ06ckObMmSN5e3ubZCm2F239vHU0R2+3OXo7zdHbZJ2h/eXoba7O1r6yt3ZUlwrkt2zZIgEw+5kxY4YkSWIpkxdeeEEKDAyU1Gq1dOONN0qpqakm+yguLpamTp0qubu7S56entLMmTOl8vJyG5xN8+dTVVUl3XTTTZK/v7+kUqmkyMhIafbs2WYNC3s6H0mSLJ4PAOmjjz4ylKmurpYefvhhycfHR3J1dZVuu+02KS8vz2Q/WVlZ0vjx4yUXFxfJz89PeuKJJySNRtPBZyNc7pyys7OlUaNGSb6+vpJarZa6d+8uPfXUUybraEqS/ZzTgw8+KEVGRkpOTk6Sv7+/dOONNxq+UCTJ8d4fSWr+nBzt/WnOpV9AjvheXarxOTniezVlyhQpODhYcnJykkJDQ6UpU6ZI6enphuc7w3vUFbz99ttSRESE5OTkJI0YMULavXu3ratkUXt83jqSo7fbHL2d5uhtss7Q/nL0Nldna1/ZWztKJkmS1PZ+fSIiIiIiIiLqCJwjT0RERERERORAGMgTERERERERORAG8kREREREREQOhIE8ERERERERkQNhIE9ERERERETkQBjIExERERERETkQBvJEREREREREDoSBPBEREREREZEDYSBPRC2WlZUFmUyGQ4cOWe0YDzzwACZPnmy1/RMREZFjsde2QVRUFJYtW2bralAXxUCeqAt54IEHIJPJzH7GjRvXoteHh4cjLy8P/fr1s3JNiYiIrGPXrl1QKBSYOHGiravS6Rw/fhx33HEHoqKiIJPJmgxyV6xYgaioKDg7OyM+Ph579+5tdr/Lly/HmjVrDI9Hjx6Nxx9/vP0qfhlr1qyBt7e32fZ9+/Zhzpw5HVYPosYYyBN1MePGjUNeXp7Jz5dfftmi1yoUCgQFBUGpVFq5lkRERNaxatUq/P3vf8f27dtx7tw5qx5LkiTU19db9Ri2UFdXZ3F7VVUVYmJi8OqrryIoKMhimXXr1mHBggVYvHgxDh48iIEDByIxMRGFhYVNHs/Ly8tiIN1WTZ1HS/n7+8PV1bWdakPUOgzkiboYtVqNoKAgkx8fHx8AgEwmw7vvvovx48fDxcUFMTEx+OabbwyvvXRo/cWLFzFt2jT4+/vDxcUFcXFx+Oijjwzljx49ihtuuAEuLi7o1q0b5syZg4qKCsPzWq0WCxYsgLe3N7p164ann34akiSZ1Fen02HJkiWIjo6Gi4sLBg4caFKny9WBiIhIr6KiAuvWrcO8efMwceJEk17ee++9F1OmTDEpr9Fo4Ofnh08++QTA5b+Ttm7dCplMhg0bNmDo0KFQq9XYsWMHMjIycOuttyIwMBDu7u4YPnw4/vjjD5Nj5eXlYeLEiXBxcUF0dDS++OILs6HbJSUl+Nvf/gZ/f394enrihhtuwOHDh5s8X/339tq1a3H11VfD2dkZ/fr1w7Zt20zKHTt2DOPHj4e7uzsCAwNx//33o6ioyPD86NGjMX/+fDz++OPw8/NDYmKixeMNHz4c//nPf3DPPfdArVZbLLN06VLMnj0bM2fORJ8+fbBy5Uq4urpi9erVTZ5H46H1DzzwALZt24bly5cbRhZmZWW16TyWLl2K/v37w83NDeHh4Xj44YcN7ZWtW7di5syZKC0tNRzvxRdfBGA+tD47Oxu33nor3N3d4enpibvvvhsFBQWG51988UUMGjQIn376KaKiouDl5YV77rkH5eXlhjLffPMN+vfvb2g7jRkzBpWVlU3+bqjrYiBPRCZeeOEF3HHHHTh8+DCmTZuGe+65BykpKU2WPXHiBDZs2ICUlBS8++678PPzAwBUVlYiMTERPj4+2LdvH77++mv88ccfmD9/vuH1b7zxBtasWYPVq1djx44duHDhAr7//nuTYyxZsgSffPIJVq5ciePHj+Mf//gH7rvvPkMjpLk6EBERNfbVV1+hV69e6NmzJ+677z6sXr3acAF52rRp+Omnn0wuOP/222+oqqrCbbfdBuDy30l6zzzzDF599VWkpKRgwIABqKiowIQJE5CUlITk5GSMGzcOkyZNQnZ2tuE106dPx7lz57B161Z8++23eP/99816qe+66y4UFhZiw4YNOHDgAIYMGYIbb7wRFy5caPa8n3rqKTzxxBNITk5GQkICJk2ahOLiYgDi4sANN9yAwYMHY//+/di4cSMKCgpw9913m+zj448/hpOTE/766y+sXLmylb95oa6uDgcOHMCYMWMM2+RyOcaMGYNdu3a1aB/Lly9HQkICZs+ebRhZGB4e3qbzkMvleOutt3D8+HF8/PHH2Lx5M55++mkAwNVXX41ly5bB09PTcLwnn3zSrF46nQ633norLly4gG3btmHTpk3IzMw0uziUkZGB9evX4+eff8bPP/+Mbdu24dVXXwUgLuZMnToVDz74IFJSUrB161bcfvvtZp0cRAAAiYi6jBkzZkgKhUJyc3Mz+fnXv/4lSZIkAZDmzp1r8pr4+Hhp3rx5kiRJ0unTpyUAUnJysiRJkjRp0iRp5syZFo/1/vvvSz4+PlJFRYVh2y+//CLJ5XIpPz9fkiRJCg4Oll5//XXD8xqNRgoLC5NuvfVWSZIkqaamRnJ1dZV27txpsu9Zs2ZJU6dOvWwdiIiIGrv66qulZcuWSZIkvnP8/PykLVu2mDz+5JNPDOWnTp0qTZkyRZKkln0nbdmyRQIgrV+//rJ16du3r/T2229LkiRJKSkpEgBp3759hufT0tIkANKbb74pSZIk/fnnn5Knp6dUU1Njsp/Y2Fjpvffes3gM/ff2q6++atim/6597bXXJEmSpFdeeUW66aabTF539uxZCYCUmpoqSZIkXXfdddLgwYMve06NRUZGGuqul5ubKwEw+x0+9dRT0ogRI5rc14wZMwxtA319HnvsMZMy7XkeX3/9tdStWzfD448++kjy8vIyK9f4HH///XdJoVBI2dnZhuePHz8uAZD27t0rSZIkLV68WHJ1dZXKysoMZZ566ikpPj5ekiRJOnDggARAysrKumwdiTjRlaiLuf766/Huu++abPP19TXcT0hIMHkuISGhySz18+bNwx133IGDBw/ipptuwuTJk3H11VcDAFJSUjBw4EC4ubkZyl9zzTXQ6XRITU2Fs7Mz8vLyEB8fb3heqVRi2LBhhivP6enpqKqqwtixY02OW1dXh8GDB1+2DkRERHqpqanYu3evYeSXUqnElClTsGrVKowePRpKpRJ33303Pv/8c9x///2orKzEDz/8gLVr1wJo2XeS3rBhw0weV1RU4MUXX8Qvv/yCvLw81NfXo7q62tAjn5qaCqVSiSFDhhhe0717d8PUNwA4fPgwKioq0K1bN5N9V1dXIyMjo9lzb/zdrv+u1Y+2O3z4MLZs2QJ3d3ez12VkZKBHjx4AgKFDhzZ7DFtry3n88ccfWLJkCU6ePImysjLU19ejpqYGVVVVLZ4Dn5KSgvDwcISHhxu29enTB97e3khJScHw4cMBiOH4Hv/f3r2FRPXtcQD/Tl6myStTWmOYI4yXMcRQETNJRFOMrCR9CKmppLBELBMfirKIoMIbqCSVL5KS/KFetIcmrSDDCUQNEhLxkl0sH7SyB3Wa33kQN45j5envOR7P//uBDbP3WrMuMwNrr9lr/7aHh5JHp9MpKy8iIiKQlJSE8PBwpKamIiUlBZmZmXa/A6I5nMgT/cO4ubnBYDAsS1lpaWkYHh7Gw4cPYTabkZSUhLy8PJSWli5L+XPLG1taWrB582a7tLl77/7TbSAiov8PdXV1sFqt8PPzU46JCNRqNaqrq+Hl5YXs7GwkJCTg8+fPMJvN0Gg0ypNdljImzZn/JzYAFBUVwWw2o7S0FAaDARqNBpmZmf9WsLXJyUnodDo8ffrUIe3vBIKbnJxEeno6rl+/7pCm0+mU1wv79Cc2bNgAJycnu/vGAeDTp08/DY63VH/aj6GhIezZswcnT57E1atXodVq8fz5c+Tk5GB6enrZg9m5uLjY7atUKthsNgCzQYXNZjNevHiBR48eoaqqCufPn4fFYkFgYOCytoNWP94jT0R2Ojo6HPaNRuNP8/v4+MBkMuHu3buorKzErVu3AABGoxE9PT12AVra29uxZs0ahISEwMvLCzqdDhaLRUm3Wq3o7OxU9sPCwqBWq/H27VsYDAa7bf4/3j9rAxERETA7vtTX16OsrAzd3d3K1tPTAz8/P+XpLXFxcfD390dTUxMaGhqQlZWlTLyWOiYtpr29HUeOHEFGRgbCw8OxadMmJUAbAISEhMBqtaKrq0s51t/fj/HxcWU/MjISo6OjcHZ2dqj/d7Fh5o/tc2Pt3NgeGRmJ169fQ6/XO5S7HJP3+VxdXREVFYXW1lblmM1mQ2trq8OKwN+V8+PHD7tjf9qPzs5O2Gw2lJWVITY2FsHBwQ5PM1isvoWMRiNGRkYwMjKiHOvt7cXExATCwsKW3DeVSoUdO3bg8uXL6Orqgqurq0P8ICKAV+SJ/nGmpqYwOjpqd8zZ2Vk5Cfjrr78QHR2N+Ph4NDQ04OXLl6irq1u0rIsXLyIqKgpbt27F1NQUmpublROD7OxslJSUwGQy4dKlSxgbG0N+fj4OHTqEjRs3AgAKCgpw7do1BAUFITQ0FOXl5ZiYmFDK9/DwQFFREc6cOQObzYb4+Hh8+fIF7e3t8PT0hMlk+mUbiIiIAKC5uRnj4+PIycmBl5eXXdqBAwdQV1eH3NxcALPR62tra9HX14cnT54o+ZYyJv1MUFAQ7t+/j/T0dKhUKly4cEG5CgsAoaGhSE5OxokTJ3Dz5k24uLjg7Nmz0Gg0UKlUAIDk5GRs374d+/fvx40bN5QJZ0tLCzIyMhyW889XU1ODoKAgGI1GVFRUYHx8HMeOHQMA5OXl4fbt2zh48CCKi4uh1WrR39+Pe/fu4c6dO3Byclry5zw9PY3e3l7l9fv379Hd3Q13d3dlNWBhYSFMJhOio6MRExODyspKfP/+HUePHl1yPXq9HhaLBUNDQ3B3d4dWq/3jfhgMBszMzKCqqgrp6emLBvPT6/WYnJxEa2srIiIisG7dOocr9cnJyQgPD0d2djYqKythtVpx6tQpJCQk/PK7mc9isaC1tRUpKSnw9fWFxWLB2NgYz2tocSt9kz4R/feYTCYB4LCFhISIyGywu5qaGtm1a5eo1WrR6/XS1NSkvH9hsLsrV66I0WgUjUYjWq1W9u3bJwMDA0r+V69eSWJioqxdu1a0Wq0cP35cvn37pqTPzMxIQUGBeHp6ire3txQWFsrhw4ftAtrYbDaprKyUkJAQcXFxER8fH0lNTZVnz54tqQ1ERER79uyR3bt3L5pmsVgEgPT09IiISG9vrwCQgIAAsdlsdnl/NybNBbsbHx+3e9/g4KAkJiaKRqMRf39/qa6udgjY9uHDB0lLSxO1Wi0BAQHS2Ngovr6+Ultbq+T5+vWr5Ofni5+fn7i4uIi/v79kZ2fbBVhbWC8AaWxslJiYGHF1dZWwsDBpa2uzy9fX1ycZGRni7e0tGo1GQkND5fTp00r/Fwsu96v6Fm4JCQl2+aqqqmTLli3i6uoqMTEx0tHR8ctyFwa7e/PmjcTGxopGoxEAMjg4+Lf6UV5eLjqdTjQajaSmpkp9fb3D95ibmyvr168XAFJSUiIijgH9hoeHZe/eveLm5iYeHh6SlZWlBPgVmQ12FxERYVd3RUWFBAQEiMjsby81NVV8fHxErVZLcHCwEhCRaCGVCJ9nQESzVCoVHjx4oDyrlYiIiFbGu3fv4O/vj8ePHyMpKemPyhgaGkJgYCC6urqwbdu25W0gEa0oLq0nIiIiIlphbW1tmJycRHh4OD5+/Iji4mLo9Xrs3LlzpZtGRP+DOJEnIiIiIlphMzMzOHfuHAYGBuDh4YG4uDg0NDQ4RDknIgIALq0nIiIiIiIiWkX4+DkiIiIiIiKiVYQTeSIiIiIiIqJVhBN5IiIiIiIiolWEE3kiIiIiIiKiVYQTeSIiIiIiIqJVhBN5IiIiIiIiolWEE3kiIiIiIiKiVYQTeSIiIiIiIqJV5F+8Rynj4Y55AQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1200x800 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12, 8))\n",
"\n",
"plt.subplot(1, 2, 1)\n",
"x = range(0,10000)\n",
"y = [10.3] * 10000\n",
"plt.plot(d2avg, 'b-', label='DRL Model')\n",
"plt.axhline(y=1, color='green', linestyle='--', label='Optimal Solution')\n",
"plt.ylabel('Accuracy')\n",
"plt.xlabel('Episodes')\n",
"plt.legend(loc='best')\n",
"plt.fill_between(d2avg.index, 1, np.array(d2avg[0]), color='g', alpha=.3)\n",
"plt.fill_between(d2avg.index, np.array(d2avg[0]), 0, color='b', alpha=.3)\n",
"plt.title('DRL Optimzation Testing')\n",
"plt.ylim(.9, 1.15)\n",
"plt.xlim(100,500)\n",
"plt.grid(True)\n",
"\n",
"plt.subplot(1, 2, 2)\n",
"plt.plot(df1, 'b-', label='DEU', marker= '.', markevery=5)\n",
"plt.plot(df2, 'r-', label='BEL', marker= '.', markevery=5)\n",
"plt.plot(df3, 'g-', label='HRV', marker= '.', markevery=5)\n",
"plt.ylabel('Accuracy')\n",
"plt.xlabel('Average per 10 iterations')\n",
"plt.title(\"Models' Accuracy\")\n",
"plt.legend(loc='best')\n",
"plt.grid(True)\n",
"plt.savefig(\"Combined_ACC_DRL.pdf\", format=\"pdf\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 81,
"id": "9a8bc2f2-371a-46c9-bc3a-3a2288989fbf",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHGUlEQVR4nO3deViVdf7/8dcB5AAiYIIgSuJaaW6jSbhM9Y3EJb/ZVGNmblOWZk2G5ogL6NRIM5XZYlnm1jKjZtb0TcMMlzJNJpfU3BWlTEBNQUFBOJ/fH/480wkwUOCA9/NxXfd1cT7nfX/O+77Jw6t7OcdmjDECAACwEA93NwAAAFDVCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAKtWUKVNks9kqZK758+fLZrPp0KFDFTJfeT3//PNq2rSpPD091b59e7f0AKBiEICAGspms5VpWbNmjbtbLZOhQ4fK39/f3W2U6vPPP9e4cePUtWtXzZs3T9OmTavU1xs6dKjL79Hf319NmzbVvffeqw8//FAOh+Oy5/7nP/+pGTNmVFyzQA3k5e4GAFyed9991+XxO++8o5UrVxYbv+GGG6qyrUo1aNAg3X///bLb7VX+2qtWrZKHh4fmzJkjb2/vKnlNu92ut99+W5J09uxZHT58WP/3f/+ne++9V7feeqv+/e9/KyAgoNzz/vOf/9SOHTs0evToCu4YqDkIQEAN9eCDD7o8/uabb7Ry5cpi47+Wl5cnPz+/ymyt0nh6esrT09Mtr52VlSVfX98KCz/GGJ07d06+vr6l1nh5eRX7fT777LN67rnnFB8fr+HDh2vRokUV0g9gNZwCA65it956q2688UZt2rRJv//97+Xn56cJEyZIkvLz85WYmKjmzZvLbrcrIiJC48aNU35+vsscNptNjz/+uD7++GPdeOONstvtat26tZKTk4u93rp163TTTTfJx8dHzZo105tvvlmh21PSNUCRkZG68847tW7dOnXu3Fk+Pj5q2rSp3nnnnWLrnzp1SqNHj1ZERITsdruaN2+uv//97795Oslms2nevHnKzc11npKaP3++JKmwsFDPPPOMmjVrJrvdrsjISE2YMKHYfrzY54oVK9SpUyf5+vpe9v4ZP368evTooQ8++EB79+51jv/73/9Wnz59FB4eLrvdrmbNmumZZ55RUVGRs+bWW2/VsmXLdPjwYee2REZGSpIKCgqUkJCgjh07KjAwULVr11b37t21evXqy+oTqM44AgRc5U6cOKFevXrp/vvv14MPPqjQ0FA5HA797//+r9atW6dHHnlEN9xwg7Zv366XXnpJe/fu1ccff+wyx7p167R06VI99thjqlOnjl555RXdc889Sk9PV7169SRJ27dvV48ePRQSEqIpU6aosLBQiYmJCg0NrfRt3L9/v+6991499NBDGjJkiObOnauhQ4eqY8eOat26taQLR75uueUWHTlyRI8++qiuvfZarV+/XvHx8Tp69Oglr4l599139dZbbyk1NdV5SqpLly6SpIcfflgLFizQvffeqzFjxmjjxo1KSkrSrl279NFHH7nMs2fPHg0YMECPPvqohg8fruuuu+6yt3nQoEH6/PPPtXLlSrVs2VLShYDo7++vuLg4+fv7a9WqVUpISFBOTo6ef/55SdLEiROVnZ2tH3/8US+99JIkOa+9ysnJ0dtvv60BAwZo+PDhOn36tObMmaPY2FilpqZy4TeuLgbAVWHUqFHm1/+kb7nlFiPJzJo1y2X83XffNR4eHuarr75yGZ81a5aRZL7++mvnmCTj7e1t9u/f7xz77rvvjCTz6quvOsf69etnfHx8zOHDh51jO3fuNJ6ensX6KsmQIUNM7dq1L1kzb948I8mkpaU5xxo3bmwkmS+//NI5lpWVZex2uxkzZoxz7JlnnjG1a9c2e/fudZlz/PjxxtPT06Snp5e7v61btxpJ5uGHH3YZHzt2rJFkVq1aVazP5OTkS77OpV7vl7Zs2WIkmaeeeso5lpeXV6zu0UcfNX5+fubcuXPOsT59+pjGjRsXqy0sLDT5+fkuYydPnjShoaHmT3/6U5n6BmoKToEBVzm73a5hw4a5jH3wwQe64YYbdP311+v48ePO5X/+538kqdgpj5iYGDVr1sz5uG3btgoICNDBgwclSUVFRVqxYoX69euna6+91ll3ww03KDY2trI2zalVq1bq3r2783FISIiuu+46Z3/ShW3u3r276tat67LNMTExKioq0pdfflnu112+fLkkKS4uzmV8zJgxkqRly5a5jDdp0qTC9sfFozanT592jv3yeqLTp0/r+PHj6t69u/Ly8rR79+7fnNPT09N5jZPD4dDPP/+swsJCderUSZs3b66QvoHqglNgwFWuYcOGxS7c3bdvn3bt2qWQkJAS18nKynJ5/MtQc1HdunV18uRJSdKxY8d09uxZtWjRoljddddd5wwKleW3+pMubPO2bdvKvM1lcfjwYXl4eKh58+Yu42FhYQoKCtLhw4ddxps0aVLu1yjNmTNnJEl16tRxjn3//feaNGmSVq1apZycHJf67OzsMs27YMECvfjii9q9e7fOnz/vHK/I3oHqgAAEXOVKusvI4XCoTZs2mj59eonrREREuDwu7c4rY8yVN1gBytKfw+HQHXfcoXHjxpVYe/E6mstR1g96vNQdX+W1Y8cOSXKGr1OnTumWW25RQECA/vrXv6pZs2by8fHR5s2b9Ze//KVMnxv03nvvaejQoerXr5+efvpp1a9fX56enkpKStKBAwcqrHegOiAAARbUrFkzfffdd7r99tsr5FOaQ0JC5Ovrq3379hV7bs+ePVc8f0Vo1qyZzpw5o5iYmAqbs3HjxnI4HNq3b5/L5y1lZmbq1KlTaty4cYW91q+9++67stlsuuOOOyRJa9as0YkTJ7R06VL9/ve/d9alpaUVW7e03/mSJUvUtGlTLV261KUmMTGxgrsH3I9rgAAL+uMf/6gjR45o9uzZxZ47e/ascnNzyzWfp6enYmNj9fHHHys9Pd05vmvXLq1YseKK+60If/zjH7Vhw4YS+zl16pQKCwvLPWfv3r0lqdgdZBePrPXp06f8jZbBc889p88//1z9+/d3nna8eBTsl0e9CgoK9Prrrxdbv3bt2iWeEitpjo0bN2rDhg0V2j9QHXAECLCgQYMGafHixRoxYoRWr16trl27qqioSLt379bixYudn1VTHlOnTlVycrK6d++uxx57TIWFhXr11VfVunVrbdu2rUxznD9/Xs8++2yx8WuuuUaPPfZYufr5taefflqffPKJ7rzzTuct8rm5udq+fbuWLFmiQ4cOKTg4uFxztmvXTkOGDNFbb73lPAWVmpqqBQsWqF+/frrtttuuqOfCwkK99957kqRz587p8OHD+uSTT7Rt2zbddttteuutt5y1Xbp0Ud26dTVkyBD9+c9/ls1m07vvvlviacqOHTtq0aJFiouL00033SR/f3/17dtXd955p5YuXaq7775bffr0UVpammbNmqVWrVo5rzkCrhpuvQcNQIUp7Tb41q1bl1hfUFBg/v73v5vWrVsbu91u6tatazp27GimTp1qsrOznXWSzKhRo4qt37hxYzNkyBCXsbVr15qOHTsab29v07RpUzNr1iyTmJhY5tvgJZW4NGvWzBhT+m3wffr0KTbfLbfcYm655RaXsdOnT5v4+HjTvHlz4+3tbYKDg02XLl3MCy+8YAoKCn6zv5JuSz9//ryZOnWqadKkialVq5aJiIgw8fHxLredX6rPS73eL/eBn5+fiYyMNPfcc49ZsmSJKSoqKrbO119/bW6++Wbj6+trwsPDzbhx48yKFSuMJLN69Wpn3ZkzZ8wDDzxggoKCjCTnLfEOh8NMmzbNNG7c2NjtdtOhQwfz6aefmiFDhpR42zxQk9mMqSZXMQIAAFQRrgECAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWwwchlsDhcOinn35SnTp1KuRrAgAAQOUzxuj06dMKDw+Xh8elj/EQgErw008/FfsySAAAUDP88MMPatSo0SVrCEAlqFOnjqQLOzAgIMDN3QAAgLLIyclRRESE8+/4pRCASnDxtFdAQAABCACAGqYsl69wETQAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALActwagL7/8Un379lV4eLhsNps+/vjj31xnzZo1+t3vfie73a7mzZtr/vz5xWpmzpypyMhI+fj4KCoqSqmpqRXfPAAAqLHcGoByc3PVrl07zZw5s0z1aWlp6tOnj2677TZt3bpVo0eP1sMPP6wVK1Y4axYtWqS4uDglJiZq8+bNateunWJjY5WVlVVZmwEAAGoYmzHGuLsJ6cIXl3300Ufq169fqTV/+ctftGzZMu3YscM5dv/99+vUqVNKTk6WJEVFRemmm27Sa6+9JklyOByKiIjQE088ofHjx5epl5ycHAUGBuqnYz+V+GWonh6e8vHycT7OLcgtdS4Pm4d8a/leVm3e+TyV9uux2Wzyq+V3WbVnz5+VwzhK7aO2d+3Lqj1XeE5FjqIKqfWr5ef8Mrv8wnwVOgorpNa3lq88bBdyf0FRgc4Xna+QWh8vH3l6eJa79nzReRUUFZRaa/eyy8vDq9y1hY5C5Rfml1rr7emtWp61yl1b5CjSucJzpdbW8qwlb0/vctc6jENnz5+tkFovDy/ZveySJGOM8s7nVUhtef7d8x5Rci3vEbxHVPZ7xMW/39nZ2b/5ZeY16tvgN2zYoJiYGJex2NhYjR49WpJUUFCgTZs2KT4+3vm8h4eHYmJitGHDhlLnzc/PV37+f3+5OTk5kqTwF8Mln+L1vVv01rIHljkf13+hfqlvnLc0vkVrhq5xPo58OVLH846XWNspvJP+M/w/zsetZrbS4ezDJda2Cmml7x/73vn4ptk3aeexnSXWNg5srEOjDzkf/37+7/XtT9+WWBvsF6xjTx9zPu71fi+tPby2xFq/Wn7KnfDfN+t7Ft+j5fuWl1grSSbxv2++gz4apCU7l5Raeyb+jPPN8NFPH9WC7xaUWps1NkshtUMkSXEr4vT6t6+XWpv2ZJoigyIlSRNTJuqFDS+UWrtj5A61rt9akjTtq2maunZqqbWpD6fqpoY3SZJe/uZljftiXKm1q4es1q2Rt0qS3tr0lh7/7PFSaz8d8Kn6tOwjSXp/+/sa9u9hpdYuvnex7mt9nyTpo10f6Y9L/lhq7by75mlo+6GSpBX7V+jOf91Zau1rvV7TqM6jJElfpX+l2xbcVmrtP2L+oae7Pi1J2nx0szq/3bnU2sRbEjXl1imSpF3HdunGN24stXZs9Fg93+N5SVJ6drqavNyk1NrHOj2mmX0uHFU+nndc9V+oX2rtkHZDNL/ffEkXAoJ/kn+ptfe2ulcf3PeB8/GlanmPuID3iP/iPeKCqniPKKsadRF0RkaGQkNDXcZCQ0OVk5Ojs2fP6vjx4yoqKiqxJiMjo9R5k5KSFBgY6FwiIiIqpX8AAFA91KhTYC1bttSwYcNcjvAsX75cffr0UV5enk6ePKmGDRtq/fr1io6OdtaMGzdOa9eu1caNG0uct6QjQBEREZwCK2cth7c5vM0psPLX8h5xebW8R1zAe4Rr7VV7CiwsLEyZmZkuY5mZmQoICJCvr688PT3l6elZYk1YWFip89rtdtnt9mLjtb1ru/yDLE1Zai6n9pdvSBVZ+8s30Iqs/eUbfkXW2r3ssqv47+dKa709vZ3/uNxVW8uzlvONoyJrvTy85OVdtn/e5an19PAs83/D5an1sHlUSq3NZquUWqny/t3zHlH+Wt4jyl97Nb9HlFWNOgUWHR2tlJQUl7GVK1c6j/Z4e3urY8eOLjUOh0MpKSkuR4QAAIC1uTUAnTlzRlu3btXWrVslXbjNfevWrUpPT5ckxcfHa/Dgwc76ESNG6ODBgxo3bpx2796t119/XYsXL9ZTTz3lrImLi9Ps2bO1YMEC7dq1SyNHjlRubq6GDSv9wjAAAGAtbj0F9u233+q22/57tXhcXJwkaciQIZo/f76OHj3qDEOS1KRJEy1btkxPPfWUXn75ZTVq1Ehvv/22YmNjnTX9+/fXsWPHlJCQoIyMDLVv317JycnFLowGAADWVW0ugq5OynMRFQAAqB7K8/e7Rl0DBAAAUBEIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHLcHoBmzpypyMhI+fj4KCoqSqmpqaXWnj9/Xn/961/VrFkz+fj4qF27dkpOTnapmTJlimw2m8ty/fXXV/ZmAACAGsStAWjRokWKi4tTYmKiNm/erHbt2ik2NlZZWVkl1k+aNElvvvmmXn31Ve3cuVMjRozQ3XffrS1btrjUtW7dWkePHnUu69atq4rNAQAANYRbA9D06dM1fPhwDRs2TK1atdKsWbPk5+enuXPnllj/7rvvasKECerdu7eaNm2qkSNHqnfv3nrxxRdd6ry8vBQWFuZcgoODq2JzAABADeG2AFRQUKBNmzYpJibmv814eCgmJkYbNmwocZ38/Hz5+Pi4jPn6+hY7wrNv3z6Fh4eradOmGjhwoNLT0y/ZS35+vnJyclwWAABw9XJbADp+/LiKiooUGhrqMh4aGqqMjIwS14mNjdX06dO1b98+ORwOrVy5UkuXLtXRo0edNVFRUZo/f76Sk5P1xhtvKC0tTd27d9fp06dL7SUpKUmBgYHOJSIiomI2EgAAVEtuvwi6PF5++WW1aNFC119/vby9vfX4449r2LBh8vD472b06tVL9913n9q2bavY2FgtX75cp06d0uLFi0udNz4+XtnZ2c7lhx9+qIrNAQAAbuK2ABQcHCxPT09lZma6jGdmZiosLKzEdUJCQvTxxx8rNzdXhw8f1u7du+Xv76+mTZuW+jpBQUFq2bKl9u/fX2qN3W5XQECAywIAAK5ebgtA3t7e6tixo1JSUpxjDodDKSkpio6OvuS6Pj4+atiwoQoLC/Xhhx/qrrvuKrX2zJkzOnDggBo0aFBhvQMAgJrNrafA4uLiNHv2bC1YsEC7du3SyJEjlZubq2HDhkmSBg8erPj4eGf9xo0btXTpUh08eFBfffWVevbsKYfDoXHjxjlrxo4dq7Vr1+rQoUNav3697r77bnl6emrAgAFVvn0AAKB68nLni/fv31/Hjh1TQkKCMjIy1L59eyUnJzsvjE5PT3e5vufcuXOaNGmSDh48KH9/f/Xu3VvvvvuugoKCnDU//vijBgwYoBMnTigkJETdunXTN998o5CQkKrePAAAUE3ZjDHG3U1UNzk5OQoMDFR2djbXAwEAUEOU5+93jboLDAAAoCIQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOW4PQDNnDlTkZGR8vHxUVRUlFJTU0utPX/+vP7617+qWbNm8vHxUbt27ZScnHxFcwIAAOtxawBatGiR4uLilJiYqM2bN6tdu3aKjY1VVlZWifWTJk3Sm2++qVdffVU7d+7UiBEjdPfdd2vLli2XPScAALAemzHGuOvFo6KidNNNN+m1116TJDkcDkVEROiJJ57Q+PHji9WHh4dr4sSJGjVqlHPsnnvuka+vr957773LmrMkOTk5CgwMVHZ2tgICAq50MwEAQBUoz99vtx0BKigo0KZNmxQTE/PfZjw8FBMTow0bNpS4Tn5+vnx8fFzGfH19tW7dusueEwAAWI/bAtDx48dVVFSk0NBQl/HQ0FBlZGSUuE5sbKymT5+uffv2yeFwaOXKlVq6dKmOHj162XNKF4JVTk6OywIAAK5ebr8IujxefvlltWjRQtdff728vb31+OOPa9iwYfLwuLLNSEpKUmBgoHOJiIiooI4BAEB15LYAFBwcLE9PT2VmZrqMZ2ZmKiwsrMR1QkJC9PHHHys3N1eHDx/W7t275e/vr6ZNm172nJIUHx+v7Oxs5/LDDz9c4dYBAIDqzG0ByNvbWx07dlRKSopzzOFwKCUlRdHR0Zdc18fHRw0bNlRhYaE+/PBD3XXXXVc0p91uV0BAgMsCAACuXl7ufPG4uDgNGTJEnTp1UufOnTVjxgzl5uZq2LBhkqTBgwerYcOGSkpKkiRt3LhRR44cUfv27XXkyBFNmTJFDodD48aNK/OcAAAAbg1A/fv317Fjx5SQkKCMjAy1b99eycnJzouY09PTXa7vOXfunCZNmqSDBw/K399fvXv31rvvvqugoKAyzwkAAODWzwGqrvgcIAAAap4a8TlAAAAA7kIAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAluP2ADRz5kxFRkbKx8dHUVFRSk1NvWT9jBkzdN1118nX11cRERF66qmndO7cOefzU6ZMkc1mc1muv/76yt4MAABQg3i588UXLVqkuLg4zZo1S1FRUZoxY4ZiY2O1Z88e1a9fv1j9P//5T40fP15z585Vly5dtHfvXg0dOlQ2m03Tp0931rVu3VpffPGF87GXl1s3EwAAVDNuPQI0ffp0DR8+XMOGDVOrVq00a9Ys+fn5ae7cuSXWr1+/Xl27dtUDDzygyMhI9ejRQwMGDCh21MjLy0thYWHOJTg4uCo2BwAA1BBuC0AFBQXatGmTYmJi/tuMh4diYmK0YcOGEtfp0qWLNm3a5Aw8Bw8e1PLly9W7d2+Xun379ik8PFxNmzbVwIEDlZ6eXnkbAgAAahy3nRs6fvy4ioqKFBoa6jIeGhqq3bt3l7jOAw88oOPHj6tbt24yxqiwsFAjRozQhAkTnDVRUVGaP3++rrvuOh09elRTp05V9+7dtWPHDtWpU6fEefPz85Wfn+98nJOTUwFbCAAAqiu3XwRdHmvWrNG0adP0+uuva/PmzVq6dKmWLVumZ555xlnTq1cv3XfffWrbtq1iY2O1fPlynTp1SosXLy513qSkJAUGBjqXiIiIqtgcAADgJm47AhQcHCxPT09lZma6jGdmZiosLKzEdSZPnqxBgwbp4YcfliS1adNGubm5euSRRzRx4kR5eBTPc0FBQWrZsqX2799fai/x8fGKi4tzPs7JySEEAQBwFXPbESBvb2917NhRKSkpzjGHw6GUlBRFR0eXuE5eXl6xkOPp6SlJMsaUuM6ZM2d04MABNWjQoNRe7Ha7AgICXBYAAHD1cuv94XFxcRoyZIg6deqkzp07a8aMGcrNzdWwYcMkSYMHD1bDhg2VlJQkSerbt6+mT5+uDh06KCoqSvv379fkyZPVt29fZxAaO3as+vbtq8aNG+unn35SYmKiPD09NWDAALdtJwAAqF7cGoD69++vY8eOKSEhQRkZGWrfvr2Sk5OdF0anp6e7HPGZNGmSbDabJk2apCNHjigkJER9+/bV3/72N2fNjz/+qAEDBujEiRMKCQlRt27d9M033ygkJKTKtw8AAFRPNlPauSMLy8nJUWBgoLKzszkdBgBADVGev9816i4wAACAikAAAgAAlkMAAgAAlsO3hAIArjoOh0MFBQXubgMVrFatWs67vq8UAQgAcFUpKChQWlqaHA6Hu1tBJQgKClJYWJhsNtsVzUMAAgBcNYwxOnr0qDw9PRUREVHiNwSgZjLGKC8vT1lZWZJ0yQ84LgsCEADgqlFYWKi8vDyFh4fLz8/P3e2ggvn6+kqSsrKyVL9+/Ss6HUY0BgBcNYqKiiRd+LolXJ0uBtvz589f0TwEIADAVedKrw9B9VVRv9tyB6Dk5GStW7fO+XjmzJlq3769HnjgAZ08ebJCmgIAAKhM5Q5ATz/9tHJyciRJ27dv15gxY9S7d2+lpaUpLi6uwhsEAABVY8qUKWrfvr3b1q9K5Q5AaWlpatWqlSTpww8/1J133qlp06Zp5syZ+uyzzyq8QQAArmY2m+2Sy5QpU9zdotOhQ4dks9m0devWEp8fO3asUlJSqrapy1Tuu8C8vb2Vl5cnSfriiy80ePBgSdI111zjPDIEAADK5ujRo86fFy1apISEBO3Zs8c55u/v7/zZGKOioiJ5eVXPm7j9/f1d+q3Oyn0EqFu3boqLi9Mzzzyj1NRU9enTR5K0d+9eNWrUqMIbBADgahYWFuZcAgMDZbPZnI93796tOnXq6LPPPlPHjh1lt9u1bt06ORwOJSUlqUmTJvL19VW7du20ZMkS55xr1qyRzWZTSkqKOnXqJD8/P3Xp0sUlWEnSc889p9DQUNWpU0cPPfSQzp07d0Xb8utTYEOHDlW/fv30wgsvqEGDBqpXr55GjRrlcgdXfn6+xo4dq4YNG6p27dqKiorSmjVrrqiPsih3AHrttdfk5eWlJUuW6I033lDDhg0lSZ999pl69uxZ4Q0CAHDZjJFyc92zGFNhmzF+/Hg999xz2rVrl9q2baukpCS98847mjVrlr7//ns99dRTevDBB7V27VqX9SZOnKgXX3xR3377rby8vPSnP/3J+dzixYs1ZcoUTZs2Td9++60aNGig119/vcJ6vmj16tU6cOCAVq9erQULFmj+/PmaP3++8/nHH39cGzZs0MKFC7Vt2zbdd9996tmzp/bt21fhvbgwKCY7O9tIMtnZ2e5uBQBQDmfPnjU7d+40Z8+evTBw5owxF6JI1S9nzpS7/3nz5pnAwEDn49WrVxtJ5uOPP3aOnTt3zvj5+Zn169e7rPvQQw+ZAQMGuKz3xRdfOJ9ftmyZkeTcN9HR0eaxxx5zmSMqKsq0a9eu1P7S0tKMJLNly5YSn09MTHRZf8iQIaZx48amsLDQOXbfffeZ/v37G2OMOXz4sPH09DRHjhxxmef222838fHxJb5Gsd/xL5Tn73eZTiLm5OQoICDA+fOlXKwDAAAVo1OnTs6f9+/fr7y8PN1xxx0uNQUFBerQoYPLWNu2bZ0/X/zqiKysLF177bXatWuXRowY4VIfHR2t1atXV2jvrVu3dvnE5gYNGmj79u2SLtxNXlRUpJYtW7qsk5+fr3r16lVoH79WpgBUt25dHT16VPXr11dQUFCJH0JkjJHNZnN+CicAAG7n5yedOeO+164gtWvXdv585v9vz7Jly5yXoVxkt9tdHteqVcv588W/3VX9JbG/7OFiHxd7OHPmjDw9PbVp06ZiX2tR2RdTlykArVq1Stdcc43zZz5hEwBQI9hs0i/Cw9WgVatWstvtSk9P1y233HLZ89xwww3auHGj825uSfrmm28qosUy69Chg4qKipSVlaXu3btX6WuXKQD9cgffeuutldULAAD4DXXq1NHYsWP11FNPyeFwqFu3bsrOztbXX3+tgIAADRkypEzzPPnkkxo6dKg6deqkrl276v3339f333+vpk2b/ua6v76bTLpwqqu8WrZsqYEDB2rw4MF68cUX1aFDBx07dkwpKSlq27at807zylDuDxKYMmWKEhIS5OHhegNZdna2RowYoX/9618V1hwAACjumWeeUUhIiJKSknTw4EEFBQXpd7/7nSZMmFDmOfr3768DBw5o3LhxOnfunO655x6NHDlSK1as+M1177///mJjP/zwQ7m24aJ58+bp2Wef1ZgxY3TkyBEFBwfr5ptv1p133nlZ85WVzZjy3acXERGhiIgIvffee86UuGbNGg0ePFhhYWFKTU2tlEarUk5OjgIDA5Wdnc1F3QBQg5w7d05paWlq0qSJfHx83N0OKsGlfsfl+ftd7s8B2rZtmxo1aqT27dtr9uzZevrpp9WjRw8NGjRI69evL+90AAAAVa7cp8Dq1q2rxYsXa8KECXr00Ufl5eWlzz77TLfffntl9AcAAFDhyn0ESJJeffVVvfzyyxowYICaNm2qP//5z/ruu+8qujcAAIBKUe4A1LNnT02dOlULFizQ+++/ry1btuj3v/+9br75Zv3jH/+ojB4BAAAqVLkDUFFRkbZt26Z7771XkuTr66s33nhDS5Ys0UsvvVThDQIAAFS0cl8DtHLlyhLH+/Tp4/xoawAAgOrssq4BKk1wcHBFTgcAAFApyn0EqKioSC+99JIWL16s9PR0FRQUuDz/888/V1hzAAAAlaHcR4CmTp2q6dOnq3///srOzlZcXJz+8Ic/yMPDQ1OmTKmEFgEAACpWuQPQ+++/r9mzZ2vMmDHy8vLSgAED9PbbbyshIaHKv0QNAABUjcjISM2YMcPdbVSYcgegjIwMtWnTRtKFr6rPzs6WJN15551atmxZxXYHAADKbenSperRo4fq1asnm82mrVu3/uY6U6ZMUfv27Ut9/j//+Y8eeeSRimvSzcodgBo1aqSjR49Kkpo1a6bPP/9c0oUdY7fbK7Y7AABQbrm5uerWrZv+/ve/V9icISEh8vPzq7D53K3cAejuu+9WSkqKJOmJJ57Q5MmT1aJFCw0ePFh/+tOfyt3AzJkzFRkZKR8fH0VFRf3ml6nOmDFD1113nXx9fRUREaGnnnpK586du6I5AQBwl3feeUf16tVTfn6+y3i/fv00aNCgy5pz0KBBSkhIUExMTEW0KKn4KTCbzaa3335bd999t/z8/NSiRQt98sknLuvs2LFDvXr1kr+/v0JDQzVo0CAdP368wnq6IuYKrV+/3rz44ovmk08+Kfe6CxcuNN7e3mbu3Lnm+++/N8OHDzdBQUEmMzOzxPr333/f2O128/7775u0tDSzYsUK06BBA/PUU09d9pwlyc7ONpJMdnZ2ubcJAOA+Z8+eNTt37jRnz551GT+Tf6bU5ez5stfmFeSVqbY88vLyTGBgoFm8eLFzLDMz03h5eZlVq1YZY4z58ssvTe3atS+5vPfee8XmTktLM5LMli1bfrOPxMRE065du1Kfb9y4sXnppZecjyWZRo0amX/+859m37595s9//rPx9/c3J06cMMYYc/LkSRMSEmLi4+PNrl27zObNm80dd9xhbrvttrLtmFKU9js2pnx/v8t9G/yvRUdHKzo6+rLWnT59uoYPH65hw4ZJkmbNmqVly5Zp7ty5Gj9+fLH69evXq2vXrnrggQckXUijAwYM0MaNGy97TgDA1c8/yb/U53q36K1lD/z3Gtb6L9RX3vm8EmtvaXyL1gxd43wc+XKkjucVP6JhEk2Ze/P19dUDDzygefPm6b777pMkvffee7r22mt16623SpI6der0m9fxhIaGlvk1K8rQoUM1YMAASdK0adP0yiuvKDU1VT179tRrr72mDh06aNq0ac76uXPnKiIiQnv37lXLli2rvN9fuqIAFBAQoK1bt6pp06blXregoECbNm1SfHy8c8zDw0MxMTHasGFDiet06dJF7733nlJTU9W5c2cdPHhQy5cvdx4ivJw5AQBwt+HDh+umm27SkSNH1LBhQ82fP19Dhw6VzWaTdCEkNW/e3M1dFte2bVvnz7Vr11ZAQICysrIkSd99951Wr14tf//i4fPAgQM1JwD99NNPCg8Pdxm7cATs8hw/flxFRUXFEmtoaKh2795d4joPPPCAjh8/rm7duskYo8LCQo0YMUITJky47DklKT8/3+Xca05OzuVuFgCgGjoTf6bU5zw9PF0eZ43NKrXWw+Z66eyhJw9dUV8XdejQQe3atdM777yjHj166Pvvv3e5s/qrr75Sr169LjnHm2++qYEDB1ZIP2VVq1Ytl8c2m00Oh0OSdObMGfXt27fEC7EbNGhQJf1dSpkDUOvWrTVz5kzn6Sd3WLNmjaZNm6bXX39dUVFR2r9/v5588kk988wzmjx58mXPm5SUpKlTp1ZgpwCA6qS2d2231/6Whx9+WDNmzNCRI0cUExOjiIgI53PV9RTYpfzud7/Thx9+qMjISHl5XfEVNxWuzB397W9/06OPPqqPPvpIb775pq655ho9+OCDCggIuKwXDg4OlqenpzIzM13GMzMzFRYWVuI6kydP1qBBg/Twww9Lktq0aaPc3Fw98sgjmjhx4mXNKUnx8fGKi4tzPs7JyXH5Dw8AgMr2wAMPaOzYsZo9e7beeecdl+fKewrs559/Vnp6un766SdJ0p49eyRJYWFhl/x7ePbs2WJBq06dOmrWrFmZX/uiUaNGafbs2RowYIDGjRuna665Rvv379fChQv19ttvy9PT87cnqURlvg3+scce07Zt23TixAm1atVK//d//6c33njjsr8A1dvbWx07dnTeUi9JDodDKSkppV5UnZeXJw8P15Yv7kBjzGXNKUl2u10BAQEuCwAAVSkwMFD33HOP/P391a9fvyua65NPPlGHDh3Up08fSdL999+vDh06aNasWZdcb+/everQoYPL8uijj15WD+Hh4fr6669VVFSkHj16qE2bNho9erSCgoKK/S13i8u5Be3VV181Xl5epk2bNqZDhw4uS3ksXLjQ2O12M3/+fLNz507zyCOPmKCgIJORkWGMMWbQoEFm/PjxzvrExERTp04d869//cscPHjQfP7556ZZs2bmj3/8Y5nnLAtugweAmulSt0jXBP/zP/9jnnjiCXe3Ua257Tb4w4cPa+nSpapbt67uuuuuKzqv179/fx07dkwJCQnKyMhQ+/btlZyc7DyPmZ6e7pISJ02aJJvNpkmTJunIkSMKCQlR37599be//a3McwIAUN2cPHlSa9as0Zo1a/T666+7ux1LsBlT9lu5Ln4JakxMjN58802FhIRUZm9uk5OTo8DAQGVnZ3M6DABqkHPnziktLU1NmjSRj4+Pu9sps8jISJ08eVKTJ0/W2LFj3d1OtXap33F5/n6X+fBNz549lZqaqtdee02DBw++vK4BAEAxhw4dcncLllPmAFRUVKRt27apUaNGldkPAABApStzAFq5cmVl9gEAQIUpx9UdqGEq6ndbDe5DAwCgYlz8aJSCggI3d4LKkpd34Xvafv0p1OVV/T6aEQCAy+Tl5SU/Pz8dO3ZMtWrVqh6fN4MKYYxRXl6esrKyFBQUdMUfpEgAAgBcNWw2mxo0aKC0tDQdPnzY3e2gEgQFBV3y06zLigAEALiqeHt7q0WLFpwGuwrVqlWrwr5CgwAEALjqeHh41KjPAULV4+QoAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwnGoRgGbOnKnIyEj5+PgoKipKqamppdbeeuutstlsxZY+ffo4a4YOHVrs+Z49e1bFpgAAgBrAy90NLFq0SHFxcZo1a5aioqI0Y8YMxcbGas+ePapfv36x+qVLl6qgoMD5+MSJE2rXrp3uu+8+l7qePXtq3rx5zsd2u73yNgIAANQobj8CNH36dA0fPlzDhg1Tq1atNGvWLPn5+Wnu3Lkl1l9zzTUKCwtzLitXrpSfn1+xAGS3213q6tatWxWbAwAAagC3BqCCggJt2rRJMTExzjEPDw/FxMRow4YNZZpjzpw5uv/++1W7dm2X8TVr1qh+/fq67rrrNHLkSJ04caJCewcAADWXW0+BHT9+XEVFRQoNDXUZDw0N1e7du39z/dTUVO3YsUNz5sxxGe/Zs6f+8Ic/qEmTJjpw4IAmTJigXr16acOGDfL09Cw2T35+vvLz852Pc3JyLnOLAABATeD2a4CuxJw5c9SmTRt17tzZZfz+++93/tymTRu1bdtWzZo105o1a3T77bcXmycpKUlTp06t9H4BAED14NZTYMHBwfL09FRmZqbLeGZmpsLCwi65bm5urhYuXKiHHnroN1+nadOmCg4O1v79+0t8Pj4+XtnZ2c7lhx9+KPtGAACAGsetAcjb21sdO3ZUSkqKc8zhcCglJUXR0dGXXPeDDz5Qfn6+Hnzwwd98nR9//FEnTpxQgwYNSnzebrcrICDAZQEAAFcvt98FFhcXp9mzZ2vBggXatWuXRo4cqdzcXA0bNkySNHjwYMXHxxdbb86cOerXr5/q1avnMn7mzBk9/fTT+uabb3To0CGlpKTorrvuUvPmzRUbG1sl2wQAAKo3t18D1L9/fx07dkwJCQnKyMhQ+/btlZyc7LwwOj09XR4erjltz549WrdunT7//PNi83l6emrbtm1asGCBTp06pfDwcPXo0UPPPPMMnwUEAAAkSTZjjHF3E9VNTk6OAgMDlZ2dzekwAABqiPL8/Xb7KTAAAICqRgACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWUy0C0MyZMxUZGSkfHx9FRUUpNTW11Npbb71VNput2NKnTx9njTFGCQkJatCggXx9fRUTE6N9+/ZVxaYAAIAawO0BaNGiRYqLi1NiYqI2b96sdu3aKTY2VllZWSXWL126VEePHnUuO3bskKenp+677z5nzT/+8Q+98sormjVrljZu3KjatWsrNjZW586dq6rNAgAA1ZjNGGPc2UBUVJRuuukmvfbaa5Ikh8OhiIgIPfHEExo/fvxvrj9jxgwlJCTo6NGjql27towxCg8P15gxYzR27FhJUnZ2tkJDQzV//nzdf//9vzlnTk6OAgMDlZ2drYCAgCvbQAAAUCXK8/fbrUeACgoKtGnTJsXExDjHPDw8FBMTow0bNpRpjjlz5uj+++9X7dq1JUlpaWnKyMhwmTMwMFBRUVGlzpmfn6+cnByXBQAAXL3cGoCOHz+uoqIihYaGuoyHhoYqIyPjN9dPTU3Vjh079PDDDzvHLq5XnjmTkpIUGBjoXCIiIsq7KQAAoAZx+zVAV2LOnDlq06aNOnfufEXzxMfHKzs727n88MMPFdQhAACojtwagIKDg+Xp6anMzEyX8czMTIWFhV1y3dzcXC1cuFAPPfSQy/jF9cozp91uV0BAgMsCAACuXm4NQN7e3urYsaNSUlKcYw6HQykpKYqOjr7kuh988IHy8/P14IMPuow3adJEYWFhLnPm5ORo48aNvzknAACwBi93NxAXF6chQ4aoU6dO6ty5s2bMmKHc3FwNGzZMkjR48GA1bNhQSUlJLuvNmTNH/fr1U7169VzGbTabRo8erWeffVYtWrRQkyZNNHnyZIWHh6tfv35VtVkAAKAac3sA6t+/v44dO6aEhARlZGSoffv2Sk5Odl7EnJ6eLg8P1wNVe/bs0bp16/T555+XOOe4ceOUm5urRx55RKdOnVK3bt2UnJwsHx+fSt8eAABQ/bn9c4CqIz4HCACAmqfGfA4QAACAOxCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5bg9AM2cOVORkZHy8fFRVFSUUlNTL1l/6tQpjRo1Sg0aNJDdblfLli21fPly5/NTpkyRzWZzWa6//vrK3gwAAFCDeLnzxRctWqS4uDjNmjVLUVFRmjFjhmJjY7Vnzx7Vr1+/WH1BQYHuuOMO1a9fX0uWLFHDhg11+PBhBQUFudS1bt1aX3zxhfOxl5dbNxMAAFQzbk0G06dP1/DhwzVs2DBJ0qxZs7Rs2TLNnTtX48ePL1Y/d+5c/fzzz1q/fr1q1aolSYqMjCxW5+XlpbCwsErtHQAA1FxuOwVWUFCgTZs2KSYm5r/NeHgoJiZGGzZsKHGdTz75RNHR0Ro1apRCQ0N14403atq0aSoqKnKp27dvn8LDw9W0aVMNHDhQ6enpl+wlPz9fOTk5LgsAALh6uS0AHT9+XEVFRQoNDXUZDw0NVUZGRonrHDx4UEuWLFFRUZGWL1+uyZMn68UXX9Szzz7rrImKitL8+fOVnJysN954Q2lpaerevbtOnz5dai9JSUkKDAx0LhERERWzkQAAoFqqURfHOBwO1a9fX2+99ZY8PT3VsWNHHTlyRM8//7wSExMlSb169XLWt23bVlFRUWrcuLEWL16shx56qMR54+PjFRcX53yck5NDCAIA4CrmtgAUHBwsT09PZWZmuoxnZmaWev1OgwYNVKtWLXl6ejrHbrjhBmVkZKigoEDe3t7F1gkKClLLli21f//+Unux2+2y2+2XuSUAAKCmcdspMG9vb3Xs2FEpKSnOMYfDoZSUFEVHR5e4TteuXbV//345HA7n2N69e9WgQYMSw48knTlzRgcOHFCDBg0qdgMAAECN5dbPAYqLi9Ps2bO1YMEC7dq1SyNHjlRubq7zrrDBgwcrPj7eWT9y5Ej9/PPPevLJJ7V3714tW7ZM06ZN06hRo5w1Y8eO1dq1a3Xo0CGtX79ed999tzw9PTVgwIAq3z4AAFA9ufUaoP79++vYsWNKSEhQRkaG2rdvr+TkZOeF0enp6fLw+G9Gi4iI0IoVK/TUU0+pbdu2atiwoZ588kn95S9/cdb8+OOPGjBggE6cOKGQkBB169ZN33zzjUJCQqp8+wAAQPVkM8YYdzdR3eTk5CgwMFDZ2dkKCAhwdzsAAKAMyvP32+1fhQEAAFDVCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMBy3PplqAAAoAoZU/ricJRv/ErXqVdPcuMXlROAALjP5b6JVtYbMutU7jrufn3Wcfe/eFfx8dK0aW57eQJQVcrJkU6erD7/EFjH/a9v5XUA1Hw2W/HFw6Pk8V8/5+vr1tYJQFVp5kxpwgR3dwFcvUp74y3rGzLrVK913P36rPPbz9VgBKCqVKuW5ONT/f+jZp3q+/qsU/pzAFAONmM4Fv1rOTk5CgwMVHZ2tgICAtzdDgAAKIPy/P3mNngAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5Xu5uoDoyxkiScnJy3NwJAAAoq4t/ty/+Hb8UAlAJTp8+LUmKiIhwcycAAKC8Tp8+rcDAwEvW2ExZYpLFOBwO/fTTT6pTp45sNluFzZuTk6OIiAj98MMPCggIqLB54Yr9XHXY11WD/Vx12NdVo7L2szFGp0+fVnh4uDw8Ln2VD0eASuDh4aFGjRpV2vwBAQH8w6oC7Oeqw76uGuznqsO+rhqVsZ9/68jPRVwEDQAALIcABAAALIcAVIXsdrsSExNlt9vd3cpVjf1cddjXVYP9XHXY11WjOuxnLoIGAACWwxEgAABgOQQgAABgOQQgAABgOQQgAABgOQSgKjJz5kxFRkbKx8dHUVFRSk1NdXdLNc6XX36pvn37Kjw8XDabTR9//LHL88YYJSQkqEGDBvL19VVMTIz27dvnUvPzzz9r4MCBCggIUFBQkB566CGdOXOmCrei+ktKStJNN92kOnXqqH79+urXr5/27NnjUnPu3DmNGjVK9erVk7+/v+655x5lZma61KSnp6tPnz7y8/NT/fr19fTTT6uwsLAqN6Vae+ONN9S2bVvnB8FFR0frs88+cz7PPq4czz33nGw2m0aPHu0cY19XjClTpshms7ks119/vfP5arefDSrdwoULjbe3t5k7d675/vvvzfDhw01QUJDJzMx0d2s1yvLly83EiRPN0qVLjSTz0UcfuTz/3HPPmcDAQPPxxx+b7777zvzv//6vadKkiTl79qyzpmfPnqZdu3bmm2++MV999ZVp3ry5GTBgQBVvSfUWGxtr5s2bZ3bs2GG2bt1qevfuba699lpz5swZZ82IESNMRESESUlJMd9++625+eabTZcuXZzPFxYWmhtvvNHExMSYLVu2mOXLl5vg4GATHx/vjk2qlj755BOzbNkys3fvXrNnzx4zYcIEU6tWLbNjxw5jDPu4MqSmpprIyEjTtm1b8+STTzrH2dcVIzEx0bRu3docPXrUuRw7dsz5fHXbzwSgKtC5c2czatQo5+OioiITHh5ukpKS3NhVzfbrAORwOExYWJh5/vnnnWOnTp0ydrvd/Otf/zLGGLNz504jyfznP/9x1nz22WfGZrOZI0eOVFnvNU1WVpaRZNauXWuMubBfa9WqZT744ANnza5du4wks2HDBmPMhbDq4eFhMjIynDVvvPGGCQgIMPn5+VW7ATVI3bp1zdtvv80+rgSnT582LVq0MCtXrjS33HKLMwCxrytOYmKiadeuXYnPVcf9zCmwSlZQUKBNmzYpJibGOebh4aGYmBht2LDBjZ1dXdLS0pSRkeGynwMDAxUVFeXczxs2bFBQUJA6derkrImJiZGHh4c2btxY5T3XFNnZ2ZKka665RpK0adMmnT9/3mVfX3/99br22mtd9nWbNm0UGhrqrImNjVVOTo6+//77Kuy+ZigqKtLChQuVm5ur6Oho9nElGDVqlPr06eOyTyX+e65o+/btU3h4uJo2baqBAwcqPT1dUvXcz3wZaiU7fvy4ioqKXH6hkhQaGqrdu3e7qaurT0ZGhiSVuJ8vPpeRkaH69eu7PO/l5aVrrrnGWQNXDodDo0ePVteuXXXjjTdKurAfvb29FRQU5FL7631d0u/i4nO4YPv27YqOjta5c+fk7++vjz76SK1atdLWrVvZxxVo4cKF2rx5s/7zn/8Ue47/nitOVFSU5s+fr+uuu05Hjx7V1KlT1b17d+3YsaNa7mcCEIBSjRo1Sjt27NC6devc3cpV6brrrtPWrVuVnZ2tJUuWaMiQIVq7dq2727qq/PDDD3ryySe1cuVK+fj4uLudq1qvXr2cP7dt21ZRUVFq3LixFi9eLF9fXzd2VjJOgVWy4OBgeXp6FrvSPTMzU2FhYW7q6upzcV9eaj+HhYUpKyvL5fnCwkL9/PPP/C5K8Pjjj+vTTz/V6tWr1ahRI+d4WFiYCgoKdOrUKZf6X+/rkn4XF5/DBd7e3mrevLk6duyopKQktWvXTi+//DL7uAJt2rRJWVlZ+t3vficvLy95eXlp7dq1euWVV+Tl5aXQ0FD2dSUJCgpSy5YttX///mr53zQBqJJ5e3urY8eOSklJcY45HA6lpKQoOjrajZ1dXZo0aaKwsDCX/ZyTk6ONGzc693N0dLROnTqlTZs2OWtWrVolh8OhqKioKu+5ujLG6PHHH9dHH32kVatWqUmTJi7Pd+zYUbVq1XLZ13v27FF6errLvt6+fbtL4Fy5cqUCAgLUqlWrqtmQGsjhcCg/P599XIFuv/12bd++XVu3bnUunTp10sCBA50/s68rx5kzZ3TgwAE1aNCgev43XeGXVaOYhQsXGrvdbubPn2927txpHnnkERMUFORypTt+2+nTp82WLVvMli1bjCQzffp0s2XLFnP48GFjzIXb4IOCgsy///1vs23bNnPXXXeVeBt8hw4dzMaNG826detMixYtuA3+V0aOHGkCAwPNmjVrXG5nzcvLc9aMGDHCXHvttWbVqlXm22+/NdHR0SY6Otr5/MXbWXv06GG2bt1qkpOTTUhICLcN/8L48ePN2rVrTVpamtm2bZsZP368sdls5vPPPzfGsI8r0y/vAjOGfV1RxowZY9asWWPS0tLM119/bWJiYkxwcLDJysoyxlS//UwAqiKvvvqqufbaa423t7fp3Lmz+eabb9zdUo2zevVqI6nYMmTIEGPMhVvhJ0+ebEJDQ43dbje333672bNnj8scJ06cMAMGDDD+/v4mICDADBs2zJw+fdoNW1N9lbSPJZl58+Y5a86ePWsee+wxU7duXePn52fuvvtuc/ToUZd5Dh06ZHr16mV8fX1NcHCwGTNmjDl//nwVb0319ac//ck0btzYeHt7m5CQEHP77bc7w48x7OPK9OsAxL6uGP379zcNGjQw3t7epmHDhqZ///5m//79zuer2362GWNMxR9XAgAAqL64BggAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgASrFmzRrZbLZi318EoOYjAAGo9oqKitSlSxf94Q9/cBnPzs5WRESEJk6cWCmv26VLFx09elSBgYGVMj8A9+GToAHUCHv37lX79u01e/ZsDRw4UJI0ePBgfffdd/rPf/4jb29vN3cIoCbhCBCAGqFly5Z67rnn9MQTT+jo0aP697//rYULF+qdd94pNfz85S9/UcuWLeXn56emTZtq8uTJOn/+vKQL33ofExOj2NhYXfz/wJ9//lmNGjVSQkKCpOKnwA4fPqy+ffuqbt26ql27tlq3bq3ly5dX/sYDqHBe7m4AAMrqiSee0EcffaRBgwZp+/btSkhIULt27Uqtr1OnjubPn6/w8HBt375dw4cPV506dTRu3DjZbDYtWLBAbdq00SuvvKInn3xSI0aMUMOGDZ0B6NdGjRqlgoICffnll6pdu7Z27twpf3//ytpcAJWIU2AAapTdu3frhhtuUJs2bbR582Z5eZX9/+NeeOEFLVy4UN9++61z7IMPPtDgwYM1evRovfrqq9qyZYtatGgh6cIRoNtuu00nT55UUFCQ2rZtq3vuuUeJiYkVvl0AqhanwADUKHPnzpWfn5/S0tL0448/SpJGjBghf39/53LRokWL1LVrV4WFhcnf31+TJk1Senq6y3z33Xef7r77bj333HN64YUXnOGnJH/+85/17LPPqmvXrkpMTNS2bdsqZyMBVDoCEIAaY/369XrppZf06aefqnPnznrooYdkjNFf//pXbd261blI0oYNGzRw4ED17t1bn376qbZs2aKJEyeqoKDAZc68vDxt2rRJnp6e2rdv3yVf/+GHH9bBgwedp+A6deqkV199tbI2F0AlIgABqBHy8vI0dOhQjRw5UrfddpvmzJmj1NRUzZo1S/Xr11fz5s2di3QhLDVu3FgTJ05Up06d1KJFCx0+fLjYvGPGjJGHh4c+++wzvfLKK1q1atUl+4iIiNCIESO0dOlSjRkzRrNnz66U7QVQuQhAAGqE+Ph4GWP03HPPSZIiIyP1wgsvaNy4cTp06FCx+hYtWig9PV0LFy7UgQMH9Morr+ijjz5yqVm2bJnmzp2r999/X3fccYeefvppDRkyRCdPniyxh9GjR2vFihVKS0vT5s2btXr1at1www0Vvq0AKh8XQQOo9tauXavbb79da9asUbdu3Vyei42NVWFhob744gvZbDaX58aNG6e5c+cqPz9fffr00c0336wpU6bo1KlTOnbsmNq0aaMnn3xS8fHxkqTz588rOjpazZo106JFi4pdBP3EE0/os88+048//qiAgAD17NlTL730kurVq1dl+wJAxSAAAQAAy+EUGAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsJz/B/R1Tnh1ZTMjAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#plt.plot(d1avg, label='Original Data')\n",
"plt.plot(x_axis, trend_line, label='Trend Line', color='red')\n",
"plt.axhline(y=1, color='green', linestyle='--', label='y=1 Line')\n",
"\n",
"# Add labels and title\n",
"plt.xlabel('X-axis')\n",
"plt.ylabel('Y-axis')\n",
"plt.title('Trend Line for Data')\n",
"plt.legend()\n",
"\n",
"# Show the plot\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "45d15e34-c083-461a-9407-b1d3ea46f1de",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}