semantics/bel_semantics.ipynb

303 lines
9.5 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from torch.utils.data import DataLoader, TensorDataset\n",
"from sklearn.model_selection import train_test_split\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check if CUDA is available\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"print(f\"Using device: {device}\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv('data/bel_data_test.csv')\n",
"# Load the data\n",
"data = np.array(data)\n",
"\n",
"# Split features and labels\n",
"X = data[:, 1:] # All columns except the first one\n",
"y = data[:, 0].astype(int) # First column as labels\n",
"\n",
"# Split the data into training and testing sets\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Convert to PyTorch tensors\n",
"X_train_tensor = torch.FloatTensor(X_train)\n",
"y_train_tensor = torch.LongTensor(y_train)\n",
"X_test_tensor = torch.FloatTensor(X_test)\n",
"y_test_tensor = torch.LongTensor(y_test)\n",
"\n",
"# Create DataLoader objects\n",
"train_dataset = TensorDataset(X_train_tensor, y_train_tensor)\n",
"test_dataset = TensorDataset(X_test_tensor, y_test_tensor)\n",
"\n",
"train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)\n",
"test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Define the MLP\n",
"class MLP(nn.Module):\n",
" def __init__(self):\n",
" super(MLP, self).__init__()\n",
" self.input_layer = nn.Linear(1024, 512)\n",
" self.h1_layer = nn.Linear(512, 64)\n",
" self.h2_layer = nn.Linear(64, 62)\n",
" self.relu = nn.ReLU()\n",
"\n",
" def forward(self, x):\n",
" x = self.relu(self.input_layer(x))\n",
" x = self.h1_layer(x)\n",
" x = self.h2_layer(x)\n",
" return x\n",
"\n",
"# Define the Decoder\n",
"class Decoder(nn.Module):\n",
" def __init__(self):\n",
" super(Decoder, self).__init__()\n",
" self.h2_h1 = nn.Linear(64, 512)\n",
" self.h1_input = nn.Linear(512, 1024)\n",
" self.relu = nn.ReLU()\n",
"\n",
" def forward(self, x):\n",
" x = self.relu(self.h2_h1(x))\n",
" x = self.h1_input(x)\n",
" return x\n",
"\n",
"class MLPWithDecoder(nn.Module):\n",
" def __init__(self):\n",
" super(MLPWithDecoder, self).__init__()\n",
" self.mlp = MLP()\n",
" self.decoder = Decoder()\n",
"\n",
" def forward(self, x):\n",
" # MLP forward pass\n",
" h1 = self.mlp.relu(self.mlp.input_layer(x))\n",
" h2 = self.mlp.relu(self.mlp.h1_layer(h1))\n",
" output = self.mlp.h2_layer(h2)\n",
" \n",
" # Reconstruction\n",
" reconstruction = self.decoder(h2)\n",
" \n",
" return output, reconstruction"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Function to reconstruct an image\n",
"def reconstruct_image(model, image):\n",
" model.eval()\n",
" with torch.no_grad():\n",
" _, reconstruction = model(image.unsqueeze(0))\n",
" return reconstruction.squeeze(0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def show_image_comparison(original, reconstructed, label, prediction):\n",
" \"\"\"\n",
" Display the original and reconstructed images side by side.\n",
" \n",
" :param original: Original image (1D tensor of 1024 elements)\n",
" :param reconstructed: Reconstructed image (1D tensor of 1024 elements)\n",
" :param label: True label of the image\n",
" :param prediction: Predicted label of the image\n",
" \"\"\"\n",
" # Convert to numpy arrays and move to CPU if they're on GPU\n",
" original = original.cpu().numpy()\n",
" reconstructed = reconstructed.cpu().numpy()\n",
" \n",
" # Reshape the 1D arrays to 32x32 images\n",
" original_img = original.reshape(32, 32)\n",
" reconstructed_img = reconstructed.reshape(32, 32)\n",
" \n",
" # Create a figure with two subplots side by side\n",
" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))\n",
" \n",
" # Show original image\n",
" ax1.imshow(original_img, cmap='gray')\n",
" ax1.set_title(f'Original (Label: {label})')\n",
" ax1.axis('off')\n",
" \n",
" # Show reconstructed image\n",
" ax2.imshow(reconstructed_img, cmap='gray')\n",
" ax2.set_title(f'Reconstructed (Predicted: {prediction})')\n",
" ax2.axis('off')\n",
" \n",
" plt.tight_layout()\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Initialize the model, loss function, and optimizer\n",
"model = MLPWithDecoder()\n",
"criterion = nn.CrossEntropyLoss()\n",
"reconstruction_criterion = nn.MSELoss()\n",
"optimizer = optim.Adam(model.parameters())\n",
"\n",
"model = model.to(device)\n",
"criterion = criterion.to(device)\n",
"reconstruction_criterion = reconstruction_criterion.to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_epochs = 250\n",
"for epoch in range(num_epochs):\n",
" model.train() # Set the model to training mode\n",
" running_loss = 0.0\n",
" \n",
" # Use tqdm for a progress bar\n",
" with tqdm(train_loader, unit=\"batch\") as tepoch:\n",
" for images, labels in tepoch:\n",
" tepoch.set_description(f\"Epoch {epoch+1}\")\n",
" \n",
" images, labels = images.to(device), labels.to(device)\n",
" \n",
" optimizer.zero_grad()\n",
" \n",
" outputs, reconstructions = model(images)\n",
" \n",
" classification_loss = criterion(outputs, labels)\n",
" reconstruction_loss = reconstruction_criterion(reconstructions, images)\n",
" total_loss = classification_loss + reconstruction_loss\n",
" \n",
" total_loss.backward()\n",
" optimizer.step()\n",
" \n",
" running_loss += total_loss.item()\n",
" \n",
" tepoch.set_postfix(loss=total_loss.item())\n",
" \n",
" epoch_loss = running_loss / len(train_loader)\n",
" \n",
" # print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.eval() # Set the model to evaluation mode\n",
"with torch.no_grad():\n",
" try:\n",
" # Get a batch of test data\n",
" images, labels = next(iter(test_loader))\n",
" \n",
" # Move data to the same device as the model\n",
" images = images.to(device)\n",
" labels = labels.to(device)\n",
" \n",
" # Forward pass through the model\n",
" outputs, reconstructions = model(images)\n",
" \n",
" # Get predicted labels\n",
" _, predicted = torch.max(outputs.data, 1)\n",
" \n",
" # Display the first few images in the batch\n",
" num_images_to_show = min(5, len(images))\n",
" for i in range(num_images_to_show):\n",
" show_image_comparison(\n",
" images[i], \n",
" reconstructions[i], \n",
" labels[i].item(), \n",
" predicted[i].item()\n",
" )\n",
" \n",
" # Calculate and print accuracy\n",
" correct = (predicted == labels).sum().item()\n",
" total = labels.size(0)\n",
" accuracy = 100 * correct / total\n",
" print(f'Test Accuracy: {accuracy:.2f}%')\n",
" \n",
" except Exception as e:\n",
" print(f\"An error occurred during evaluation: {str(e)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "semantics",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}